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In This Issue

This issue of Survey Methodology opens with the sixth paper in the annual invited paper series in honour
of Joseph Waksberg. It is with sadness that we note the passing of Joseph Waksberg in January of 2005. A
short biography of Joseph Waksberg was given in the June 2001 issue of the journal, along with the first
paper in the series. For more information about the life and work of Joseph Waksberg, see the Statistical
Science article (Vol. 15, No 3) “A Conversation with Joseph Waksberg,” by David Morganstein and David
Marker available at http://projecteuclid.org/Dienst/Ul/1.0/Home. I would like to thank the members of the
selection committee — David Bellhouse, chair, Gordon Brackstone, Sharon Lohr and Wayne Fuller — for
having selected Alastair Scott as the author of this year’s Waksberg Award paper.

In his paper entitled “Population-Based Case Control Studies”, Scott discusses the analysis of case
control studies in which the controls are obtained from a complex sample survey. Using the example of
logistic regression, he shows how the survey weighted estimates can be quite inefficient because of the
relatively small weight given to the cases. Drawing on an analogy with maximum likelihood estimation, he
then proposes a simple, much more efficient alternative that is, however, biased for the intercept term.
Efficiency and robustness properties are illustrated through examples. Finally, he briefly discusses the
problem of case-control family studies.

Kott considers the use of weight calibration to correct for nonresponse and coverage errors. He gives a
general description of calibration estimation, and extends Estavao and Sarndal’s functional form approach
to general calibration. He then discusses properties of this calibration method to correct for unit
nonresponse and coverage errors under a quasi-randomization model. He concludes with an empirical
example and discussion of some issues.

Reiter, Raghunathan and Kinney investigate through a simulation study the effect of ignoring sampling
design variables when building imputation models in a multiple imputation context. They show that
potential biases can be reduced by controlling for these design variables in the imputation model, either
through a fixed-effect or mixed-effect model. They conclude that a useful prescription for imputers is to
include as predictors all variables that are related to the variables being imputed, particularly sampling
design variables, so as to make the usual assumption of ignorable non-response satisfied.

The article by Funaoka, Saigo, Sitter and Toida investigates the use of bootstrap variance estimators in
stratified multi-stage sampling where the sampling fractions are large. They propose a Bernoulli-type
bootstrap that provides consistent bootstrap variance estimates when simple random sampling without
replacement is used at each stage. The proposed method is simple to implement and can be extended to any
number of stages without much complication. The method is illustrated through a limited simulation study
and using data from the 1997 Japanese National Survey of Prices.

In the Kozak and Verma paper, the geometric approach to stratification proposed by Gunning and
Horgan (2004) is compared with two optimization approaches; the Lavallée-Hidiroglou algorithm
(Lavallée and Hidiroglou 1988) and an optimization algorithm proposed by Kozak (2004). Using five
artificial populations of various sizes, the three methods are compared under two scenarios; comparison of
the resulting CV under a fixed sample size and comparison of the resulting sample sizes under a fixed level
of precision.

Deville and Lavallée present general theoretical foundations for the weight share method in indirect
sampling. They define the important concept of a link matrix in indirect sampling, which specifies how the
elements of the sampled population are linked to the target population and gives weights to these links that
permit unbiased estimation. They discuss important properties of the link matrix, and derive necessary and
sufficient conditions for an optimal link matrix to exist. The theory is illustrated with some interesting
examples.
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Deville and Maumy-Bertrand study the determination of a sampling design and an estimation method
for a tourist survey. The main issue that this type of survey has to address is the absence of a sampling
frame that can be used to directly reach tourists. To get around this problem, authors suggest to sample
services for tourists. This is thus a situation of indirect sampling for which the generalized weight-share
method is used to obtain estimates of parameters of interest. Some extensions to the method become
necessary. The authors focus more specifically on one of them and describe it in greater detail.

Félix-Medina and Monjardin consider a variant of link-tracing sampling. They use a Bayesian approach
to construct estimators of population size, however in order to make inferences about the population size
that are robust to erroneous specification of the assumed model, the authors make inferences under the
frequentist design-based approach. Based on the results of the simulation study, the proposed estimators
perform better than the maximum likelihood estimators that are currently used.

The paper by Dorfman, Lent, Leaver, and Wegman presents a comparison of the Consumer Price Index
design methodologies of the United Kingdom and the United States employing the same “scanner” data.
They conclude that in the population studied, the UK approach, which involves tighter stratification and,
more importantly, more restrictive judgment sampling within strata than the probability sampling of the US
approach, does better in estimating a target superlative index. This is shown to be the case, whichever low
level price index estimator (the ratio of averages, the geometric mean, or the average of ratios) is employed.

In their paper, Thomas, Raghunathan, Schenker, Katzoff and Johnson use multiple imputation to analyze
data with missing values caused by a matrix sampling design. In matrix sampling, only a subset of
questions is administered to each respondent in order to reduce respondent burden. The authors develop a
method for creating matrix sampling forms, each form containing a subset of questions to be administered
to randomly selected respondents. The method is designed so that each form includes questions that are
predictive of the excluded questions in order to recover some of the information about the latter. The
proposed method and multiple imputation are evaluated using data from the National Health and Nutrition
Examination Survey.

Harold Mantel, Deputy Editor
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Population-Based Case Control Studies

Alastair Scott !

Abstract

We discuss methods for the analysis of case-control studies in which the controls are drawn using a complex sample survey.
The most straightforward method is the standard survey approach based on weighted versions of population estimating
equations. We also look at more efficient methods and compare their robustness to model mis-specification in simple cases.
Case-control family studies, where the within-cluster structure is of interest in its own right, are also discussed briefly.

Key Words: Case-control studies; Response-selective sampling; Retrospective sampling; Weighting.

1. Introduction

The case-control study, in which separate samples are
drawn from ‘cases’ (people with a disease of interest, say)
and from ‘controls’ (people without the disease), is one of
the most common designs in health research. In fact,
Breslow (1996) has described such studies as “the backbone
of epidemiology”. We shall concentrate on biostatistical
applications, but the basic design is an efficient sampling
strategy whenever cases are rare and examples are common
in many other fields as well (business, social science,
ecology, market research, for example). In particular, there
has been a parallel development of much of the theory in the
econometric literature on choice-based sampling (see
Manski and McFadden 1981, Cosslett 1981 for example).

There are two fundamentally different types of case-
control study: (set-)matched studies, in which each case is
matched with one or more controls, and unmatched studies,
in which the case and control samples are drawn indepen-
dently, although there may be loose “frequency matching”,
with the control sample allocated across strata defined by
basic demographic variables in such a way that the distri-
bution of these variables in the control sample is similar to
their expected distribution in the case sample. We are only
concerned with unmatched studies here and, more
specifically, only with the restricted class of population-
based studies in which the controls (and occasionally the
cases as well) are selected using standard survey sampling
techniques.

An excellent introduction to the strengths and potential
pitfalls of case-control sampling is given by Breslow (1996,
2004). One of the most important and difficult challenges
confronting anyone designing such a study is to ensure that
controls really are drawn from the same population, using
the same protocols, as the cases. In the words of Miettinen
(1985), cases and controls “should be representative of the
same base experience”. Failure to ensure this adequately in
some early examples led to case-control sampling being

regarded with some suspicion by many researchers. A
comprehensive discussion on the principles that should
govern the selection of controls is given in Wacholder,
McLaughlin, Silverman and Mandel (1991). Since the
essence of survey sampling lies in methods for drawing
representative samples from a target population, it became
natural at some stage to think about using survey methods
for obtaining controls. Increasingly over the last 25 years or
so, the controls (and occasionally the cases as well) are
being drawn using complex stratified multi-stage designs. A
good history of this development can be found in Chapter 9
of Korn and Graubard (1999).

The analysis of such studies is a particularly appropriate
topic for this paper since Joe Waksberg himself was one of
the principal drivers behind the adoption of survey methods
(and random digit dialing, in particular) for obtaining
controls (see, for example, Waksberg 1998 and DiGaetano
and Waksberg 2002).

2. Examples

We start with two examples to illustrate the sort of
problem that we want to handle. The first example is typical
of the large scale studies conducted by the National Cancer
Institute whose personnel have been responsible for much of
the development of the area. Joe Waksberg, along with his
colleagues at Westat, had a strong influence on the sampling
methods used for these studies (see Hartge, Brinton,
Rosenthal, Cahill, Hoover and Waksberg 1984, who also
gives a description of a number of other similar studies) so it
is a natural place to start.

Example 1.

In 1977-78, the National Cancer Institute and the US
Environmental Protection Agency conducted a population-
based case-control study to examine the effects of ultraviolet
radiation on non-melanoma skin cancer over a one-year
period (Hartge, Brinton, Rosenthal, Cahill, Hoover and

1. Alastair Scott, Department of Statistics, University of Auckland, Auckland 1, New Zealand. E-mail: a.scott@auckland.ac.nz.
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Waksberg 1984, Fears and Gail 2000). The study was
conducted at eight geographic locations with varying solar
ultraviolet intensities. Samples of non-melanoma skin
cancer patients aged 20 to 74 and samples of general
population controls from each region were interviewed by
telephone to obtain information on risk factors. At each
location, a simple random sample of 450 patients and an
additional sample of 50 patients in the 20—-49 age group
were selected for contact. For the controls, 500 households
were sampled at each location using Mitofsky-Waksberg
random-digit dialing (Waksberg 1978). An attempt was
made to interview all adults aged 65-74 as well as a
randomly selected individual of each sex aged 20 to 64. In
addition, a second Mitofsky-Waksberg sample of between
500 to 2,100 households was taken and information
gathered on all adults aged 65 to 74. This resulted in
samples of approximately 3,000 cases and 8,000 controls,
with the sampling rate for cases being roughly 300 times the
rate for controls, depending on age.

The second example is important to me personally since
it first introduced Chris Wild and myselfto the area.

Example 2.

The Auckland Meningitis Study was commissioned by
the NZ Ministry of Health and Health Research Council to
study risk factors for meningitis in young children which
was reaching epidemic proportions in Auckland at that time
(see Baker, McNicholas, Garrett, Jones, Stewart, Koberstein
and Lennon 2000). The target population was all children
under the age of nine in the Auckland region in 1997 —
2000.

All cases of meningitis in the target age group over the
three year duration of the study were included in the study,
resulting in about 250 cases. A similar number of controls
was drawn from the remaining children in the study
population using a complex multi-stage design. At the first
stage of sampling, 300 census mesh blocks (each containing
roughly 70 households) were drawn with probabilities
proportional to the number of houses in the block. At the
second stage, a systematic sample of 20 households was
selected from each chosen mesh block and children from
these households were selected for the study with varying
probabilities that depended on age and ethnicity and were
chosen to match the expected frequencies among the cases.
Selection probabilities are shown in the table below: (PI
means Pacific Islander) Cluster sample sizes varied from
one to six and a total of approximately 250 controls was
achieved. This corresponds to a sampling fraction of about 1
in 400 on average, so that cases are sampled at a rate that is
400 times that for controls here.

These two studies are fairly typical of the sort of study
that we want to discuss. They also illustrate the two main
sampling methods used, namely random digit dialing and

Statistics Canada, Catalogue No. 12-001
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area sampling. A lively discussion of the relative merits of
these two strategies are given in Brogan, Denniston, Liff,
Flagg, Coates and Brinton (2001) and DiGaetano and
Waksberg (2002).

Table 1
Selection Probabilities

AGE MAORI PACIFIC ISLANDER OTHER
< 1 year 0.29 0.70 0.10
< 3years 0.15 0.50 0.07
< Syears  0.15 0.31 0.04
< 8years  0.15 0.17 0.04

3. General Set-Up

Suppose that we have a binary response variable, Y,
with ¥ =1 denoting a case and ¥ = 0 denoting a control,
and a vector of potential explanatory variables, x. We
assume that the value of Y is known for all N units in
some target population but that at least some components of
x are unknown. We stratify the population into cases and
controls, draw a sample from each stratum based on the
variables that we know for all units, and measure the values
of the missing covariates for the sampled units (in practice,
the control sample is often drawn from the whole popu-
lation, rather than the units with ¥ = 0. If the proportion of
cases is small, the difference will be negligible. Otherwise it
is simple to adapt the results below to this variant — for a
rigorous development, see Lee, Scott and Wild 2006).
Typically, we then want to use the sample data to fit a
binary regression model for the marginal probability of a
being a case as a function of the covariates. The model used
is almost always logistic with

logit {P(Y =1|x)} = lOg(P(Y = 0| X)j
=B, + x'B, (©)

say, where B, and B, are unknown parameters, and we
shall assume model (1) throughout the paper. Extensions to
more general regression models are straightforward in
principle (see Scott and Wild 2001b) but the resulting
expressions are somewhat clumsier than those for the
logistic model.

How should we go about fitting the model (1) given
sample data? Efficient methods are straightforward with
simple or stratified random sampling, but we are interested
in more complex sampling procedures here. Very often the
complex sampling is simply ignored. Potentially, this could
lead to all the usual problems that arise from ignoring
sampling design structure. Varying selection probabilities
can distort the mean structure and estimates produced by
standard programs may be inconsistent. Intra-cluster
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correlation can reduce the effective sample size so that
routinely-produced standard errors are too small, confidence
intervals are too short, p — values too low, and so on. A
simple strategy that has been adopted by some researchers
to minimize the effect is to keep the numbers of subjects in
each cluster small (see Graubard, Fears and Gail 1989, for
example). This reduces the design effect and hence the
impact of clustering, but it can be a very expensive remedy.
We look at some possible ways of coping with standard,
more cost-effective, sampling schemes in the next few
sections.

4. Survey Weighted Approach

One obvious possibility is to use the standard weighted
estimating equation approach embodied in most modern
packages for analyzing survey data (see Binder 1983).
Suppose first that we had data from the whole finite
population. If we assume this finite population is drawn
from a superpopulation in which the conditional logistic
model (1) holds, then we could estimate B by solving the
whole-population or census estimating equations

SB) = 2%, — m(x;3B) = 0, @)

where p,(x; B) = ePo B /(1 + h*X'Pi). (These are the
likelihood equations if population units are assumed to be
sampled independently from a superpopulation but the
resulting estimators are consistent under much more realistic
population structures as long as model (1) holds
marginally — see Rao, Scott and Skinner 1998 for more
discussion.)

Now, for any fixed value of B, S(B) in equation (2) is
just a vector of population totals. This means that we can
estimate it from the sample, say by

SB) = 2 wx, (v, — pi(x;5 B), ©)

sample

where w, is the inverse of the selection probability, perhaps
adjusted for non-response and post-stratification. Setting
S(B) equal to 0 gives us our estimator, f. We could use
linearization or the jackknife directly on f to get standard
errors. Alternatively, we can expand S(B) about the true
value, B, and obtain as our estimated covariance matrix the
“sandwich” estimator

Cov{B} = J(B)' Cov{SPB)} IPB)", 4)

where J(B) =~ 88/0B" =S upic W, 1 (x;3B) po (x;3 B) X, X!
with p, =1- p,. Since S(B) is a vector of totals,
Cov{S(B)} should be available as a matter of course for
any standard design. Most major statistical packages (for
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example, SAS (PROC SURVEYLOGISTIC), SPSS
(CSLOGISTIC), STATA (SVY:LOGIT), SUDAAN
(LOGISTIC)) can handle logistic regression with com-
plex sampling and weighting routinely these days. Thus
producing weighted estimates and making associated
inferences is reasonably straightforward.

Strictly speaking, the selection probabilities will
themselves often be random variables in our model-based
framework, based on a finite population that we assume is
generated from the model. We can account for this by using
the results in Rao (1973), but the correction is of order 1/ N
and can be ignored in most large studies.

The downside of weighting in general is that it tends to
be inefficient when the weights are highly variable. (A rule-
of-thumb sometimes suggested is that w,__/w,_.. should be
no more than 10.) In case-control studies, the variation in
weights is about as extreme as it can get. For instance, the
ratio of w,,, to w,;, is approximately 300:1 in Example 1
and approximately 1,000:1 in Example 2. Even more
extreme ratios are not uncommon. No experienced survey
sampler would be surprised to find that weighting is not
very efficient under these circumstances.

Can we do something more efficient? The answer is
certainly “Yes” in some special cases. Fully efficient
likelihood methods have been developed in situations where
both cases and controls are drawn using simple or stratified
random sampling and these can be very much more efficient
than weighted methods. We review these results in the next
section.

5. Review: Simple Case

We start with the very simplest case where cases and
controls are selected by simple random sampling and we
have no population information about any of the covariates
at the design stage. Here fully efficient semi-parametric
maximum-likelihood procedures are well-developed. More-
over, these methods are very simple to implement using
standard software (Prentice and Pyke 1979). (The methods
are semi-parametric because the full likelihood depends on
the unknown distribution of the covariates and we do not
want to model this in general.)

It turns out that all we have to do is fit model (1) using a
standard logistic regression program without any weighting
at all. More specifically, solving the unweighted equation

> x(v - p(x;3B) =0, Q)

sample

produces efficient estimates of all the coefficients except the
intercept. Perhaps more importantly, all the standard errors
and resulting inferences that we get from the standard
program are also valid, again with the exception of anything
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involving the intercept. It is simple enough to correct
inferences involving the intercept provided that we know
the ratio of the two sampling fractions but we are often only
interested in the other coefficients anyway.

The results extend directly to stratified random sampling,
provided that separate intercepts for each stratum are
included in the model. Again efficient semi-parametric
estimators of all coefficients except the stratum intercepts
can be obtained simply by running the data through an
ordinary (unweighted) logistic regression program. Again,
the estimated standard errors and associated inferences are
also valid. As with simple random sampling, we can correct
the results for the stratum intercepts provided that we know
the stratum sampling fractions but, again, these are usually
of minor interest.

Thus in these simple situations, maximum likelihood
estimates are simpler to compute than the weighted
estimates, as well as being more efficient. How much more
efficient are they? This depends on the number of
covariates, the magnitude of their coefficients and the ratio
of the sampling fractions, but the difference is often
substantial. (The weighted estimates are about 50% efficient
in Example 2 of the introduction, for example, and less than
20% efficient in the brain cancer example we look at in
Section 8. Lawless, Kalbfleisch and Wild 1999 discuss
situations where the efficiency is even lower than this.)

Finally, we note that the maximum likelihood estimates
have yet another advantage over weighted estimates: they
tend to have much better small sample performance,
especially in situations where the efficiency of the weighted
estimates is low. Essentially, weighting results in a
reduction in the effective sample size and it is this effective
sample size that governs when the asymptotic theory starts
to give a good approximation. (See Scott and Wild 2001a
for more details.) Clearly we can pay a very heavy price for
a rigid adherence to population weights.

6. More Complex Sampling

In both the examples in Section 2, the controls were
obtained from a complex multi-stage survey rather than a
simple random sample. As we noted in the introduction, this
is increasingly common in large scale case-control studies.
(Occasionally, as in Example 1, the cases are also selected
using a complex sampling scheme.) It is possible to derive
semi-parametric efficient estimators for stratified multistage
sampling, assuming that primary sampling units are selected
independently within strata (which is the assumption that all
the computer packages are making with the survey-
weighted approach anyway), but this requires us to build
multivariate models for the vector of responses within a
primary sampling unit. Details can be found in Neuhaus,
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Scott and Wild (2002, 2006). Unless we are interested in the
within-cluster structure in its own right (as in the family
case-control studies considered in Section 9, for example),
this requires far too much effort for it to be practicable,
certainly for routine analysis.

Can we do something simpler without losing too much
efficiency? Weighted estimates are always available, of
course. However, they are just as inefficient with complex
designs as they are in the simple case considered in the
previous section. It turns out that we can do considerably
better without too much extra complication.

Return for a moment to the situation of the previous
section where we have a simple random sample of size »,
from the case stratum and an independent simple random
sample of size n, from the control stratum. Here all units in
Stratum ¢ have weight w, o« W, /n,, where W, denotes
the proportion of the population in the stratum, for ¢ = 0,1.
If we divide throughout by N and set p,(x;f) =1-
p;(x; B), then we can re-write equation (3) for the weighted
estimator in the form

z X; po(x;5B)
W1 cases

z X, pi(x;;B)
_ W() controls =0. (6)

n ny

Similarly, we can write equation (5) for the efficient
maximum likelihood estimator in the form

z X; po (X5 B) z X, p(x;;B)
(01 cases _ (D() controls — 0’ (7)
n ny

where ®, = n,/(n, +n), for ¢ =0,1. Both these are
special cases of the general set of estimating equations

D X, po(x;3B) > x,p(x;;B)
}\‘1 cases _ }\‘0 COHU’OIS — 0' (8)

n ny

As ny, n, > o, under mild conditions on the way that
the finite population is generated from the superpopulation
the solution of (8) converges almost surely to the solution
B* of

M EAX po(X; B} = R By (X pi(X: B} =0, (9)

where E,{} denotes the conditional expectation given that
Y =+ for ¢ =0,1. If model (1) is true, then equation (8)
has solution B, =B, and B, =B, +b, with b, =
log (MW, /L W) for any positive A,, A, (see Scott and
Wild 1986 for details of the proof). Thus the solution to
equation (8) produces consistent estimators of all the
regression coefficients apart from the constant term for any
A, > 0(£ = 0,1). Asin the simple case, it is easy to correct
the inferences about the constant term, provided that we
know the proportion of cases in the population.
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Now turn to more complex sampling schemes. Since the
left hand side of equation (9) just involves two sub-
population means, we can still estimate these means for any
standard survey design. This suggests an estimator, f, say,
for general sampling schemes satisfying

S, (B) = 41, B) — Ao fi(B) = 0, (10)

where [i,(B) is the sample estimator of the subpopulation
mean E, {X(1- p,(X; B))}(¢ =0,1). The covariance
matrix of B, can then be obtained by standard linearization
arguments. This leads to an estimated (‘sandwich’)
covariance matrix

COV{ﬁk} ~ Jx(ﬁx)_l éov{sx(ﬁx)}‘]x(ﬁx)_la (11)

with  J,(B) = (=S, (B)/aB") and Cov{S,(B)} =
27 Covify, (B)} + 45 Coviy(B)}.  Here, Coviiy,(B)}
denotes the usual survey estimate which should be available
routinely for any standard survey design since [i,() is just
an estimated mean.

All of this can also be carried out straightforwardly in
any package that can handle logistic regression for complex
survey designs simply by specifying the appropriate vector
of weights. More specifically, suppose that

2w X (= p (3 B)
i, (B) = = , (12)
pIRLY

ieS,

where S, denotes the case subpopulation (i.e., the set of all
units with ¥ =1) and S, denotes the control sub-
population (the set of all units with Y = 0). Then the
estimating equation (9) can be written in the form

S,B) = 2 wx(y-px:B)=0 (13

sample

with w; oc A, w; /3,5 w; forunitsin S,(¢ = 0,1). In other
words, we simply have to scale the case weights and control
weights separately so that the sum of the case weights is
proportional to A, and the sum of the control weights is
proportional to A, and put them, along with the usual
specification of the design structure (strata, primary
sampling units), into our program of choice. Note that the
choice of proportionality constant does not affect the result.
We still have to decide on good values for 2, and A,
We can often get substantial gains using sample weights
(A, = n,/n) compared with using population weights
(A, = W,). Scott and Wild (2002) report efficiency gains of
50% or more in Example 2 and in simulations based on that
population. The gains became larger as the strength of the
relationship increased, and as the effect of clustering
increased. Moreover the coverage of confidence intervals
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was closer to the nominal value for sample weighting in the
simulations.

Using sample weights is the most efficient possible
strategy when we have simple random samples of cases and
controls but for more complex schemes using the sample
weights will no longer be fully efficient. We might expect
weights based on some form of equivalent sample sizes to
perform better. This does indeed produce some gain in
efficiency in some limited simulations reported in Scott and
Wild (2001a). However, the gains are relatively small, at
least when the control sample design effect is less than 2,
since Cov{B,} is very flat as a function of A near its
minimum. Considerations of robustness that we discuss in
Section 8 are possibly more important in the choice of A.

The gains from sample weighting may depend very
much on the particular problem under examination. Korn
and Graubard (1999, page 327) comment that, in their
experience, the sample weighting strategy rarely produces
big gains in efficiency. Obviously more work, both
empirical and theoretical, is needed here. In any event, it
would seem prudent to fit the model using both sample
weights and population weights routinely. If the coefficient
estimates are similar, then we can make a judgement based
on the estimated standard errors. However, significant
differences in the coefficient estimates indicate that the
model has been mis-specified. If we are unable to fix up the
deficiencies in the model, then we need to think very
carefully about just what it is that we are trying to estimate.
We look at this again in Section 8.

7. Stratified Sampling

The compromise suggested in the previous section (i.e.,
use standard survey weighting within the subpopulations
defined by case/control status but combine the sub-
populations using sample proportions) seems to work
reasonably well in practice but it is all completely ad hoc.
Could we do better with a more systematic approach?

In the special case of stratified random sampling, where
independent case-control samples are taken within each
stratum, fully efficient procedures are well-developed and
easy to implement. In particular, if our model includes a
separate intercept for each stratum, then ordinary
unweighted logistic regression (with a simple adjustment for
the stratum intercepts if they are wanted) is the efficient
semi-parametric maximum likelihood procedure (Prentice
and Pyke 1979). It is reasonably straightforward to extend
this to more general stratified designs. Our model is now

logit{P(Y = 1] x, Stratum h)} = B,, + x'B,, (14)
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and the stratified equivalent of the estimating equation (7) is

z X, Doy (X;5 B) z X, p, (X5 B)
z }\'1;, cases _ }\'()h controls

h ny, i

= 0.(15)

As ny,, n, — o, the solution of (7) converges almost
surely to the solution of

> gy By (X 2oy (X5 B}
h
- }“Oh E, {Xpm X; Py =0, (16)

with the obvious extension of the notation from the
unstratified case. If model (13) is true, then equation (8) has
solution By =B, and By, =B, + b, Wwith b, =
log (A, Wo,, / Mo, Wy;,)- Since equation (14) only involves
stratum means, we can estimate them easily using the data
coming from any reasonable survey design, for example by

2w X = 21 (% B)
a,PB) =— z "

€Sy,

Substituting these estimators in place of the sample means
in equation (14) leads to the estimating equation

S.B) =2 > wix.(y - py(x;B) =0, (17)

h €S,

with wj, oc &, wy, /Y5, w, for units in S, (¢ =0,1;
h =1, .., H). This can be fitted in any standard survey
program by including these weights and the appropriate
design information. Note that we need to be careful about
how we include the so-called ‘strata’ in the design
specification. If primary sampling units are nested within
the ‘strata’, as with the geographical locations in Example 1,
there is no problem and the strata should be included in the
standard way. However, if the primary sampling units cut
across the ‘strata’, as with age in Example 1 and age and
ethnicity in Example 2, then these are not strata in the usual
survey sampling sense. They should not be included in the
design specifications but simply handled through the
weights.

Sometimes we want to model the contribution of the
stratum variables using some smooth parametric curve
rather than including them through dummy variables. For
example, we might well want to include a linear function of
age in our model in both Examples 1 and 2. The survey
weighted method and the compromise weighting suggested
in Section 6 both apply directly and no new theory is
needed. More efficient methods are not nearly so simple,
however. Fully efficient methods have been developed in
the case where simple random samples of cases and controls
are drawn within each of the strata (see Scott and Wild
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1997, and Breslow and Holubkov 1997) but the resulting
estimating equations are not linear combinations of stratum
means and there is no obvious way of generalizing them to
more complex sampling schemes. There is a slightly less
efficient way that does extend easily, however. If we modify
model (14) by including b,, = log(A,, W, /Ay, W,,) as an
offset, i.e., we set

logit{P"(Y =1]| x, Stratum h)} = b,, + B,, + x'B,, (18)

then equation (15) produces consistent, fully efficient,
estimates of all the coefficients including B, (2 =1,...,
H). Including the same offsets in models where there is no
Bo, term and the x vector includes functions of the
stratifying variable produces consistent estimators of all the
coefficients with typically high (although not full) efficiency
(see Fears and Brown 1986, and Breslow and Cain 1988).
This generalizes to arbitrary designs immediately. We just
use equation (16) with p,, replaced by p,, defined by
setting logit(p;,) = b,, + x'B. Then any survey program
that caters for offsets can be used to fit the model and
provide estimated standard error, efc.

How much extra efficiency do we get in this case? We
have carried out a number of simulations, some of which are
reported in Scott and Wild (2002). Most of the scenarios are
based on the meningitis study in Example 2 and we set the
ratio of the largest to smallest stratum sampling fraction in
the control sample at about 10:1. Without any clustering, the
gain in efficiency from using the offset method (which is
full maximum likelihood in this case) compared to the
ad hoc procedure was never more than 10%. The relative
efficiencies stayed about the same as clustering that cut
across strata was introduced. When clustering nested within
strata was introduced, the gains disappeared progressively
as the design effect increased and the ad hoc procedure
actually became more efficient than the offset method when
the design effect reached about 1.5.

As we stated earlier, it is possible to produce fully
efficient semi-parametric estimators if we are willing to
model the dependence structure within primary sampling
units. We have begun to carry out some simulation. The
early results suggest that the extra work involved in the
modeling will almost never be worth the effort if we are
only interested in the parameters of the marginal model (1).
Our tentative conclusion is that, the adhoc partially
weighted procedures (with sample weights) are simple to
use and work well enough for most practical purposes in the
range covered by our experience but this is another area
where more empirical work is needed yet. We note,
however, that there are some problems, like the case-control
family design discussed in Section 9, where the within-
cluster behavior is of interest in its own right. These require
more sophisticated methods.
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8. Robustness

There must be a catch somewhere. What if the model is
not correct? What price do we pay for efficiency then?

By its construction, the population-weighted estimator is
always estimating the linear logistic approximation that we
would get if we had data from the whole population. By
contrast, what the more efficient sample-weighted estimator
is estimating depends on the particular sample sizes used.
Some people would regard this alone as a strong enough
reason for using the population weighted estimator and I
suspect that very few people would regard it as completely
satisfactory to have the target of their inference depend on
the arbitrary choice of sample size.

Our general estimator f, satisfying (10) converges to the
solution of equation (9), B, say, with v = A, /(A + A)),
which depends on the true model and distribution of the
covariates, as well as on y. In Scott and Wild (2002), we
looked at what happens to B, under mild deviations from
the assumed model. (We are interested in small deviations
since large ones should be picked up by routine model-
checking procedures and the model then improved.) For
simplicity, suppose that we fit a linear model with a single
explanatory variable for the log odds ratio but that the true
model is quadratic, say

Negative Quadratic
logit(x) = By + 4x — 0.6x?
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logit{P(Y = 1| x)} =B, + B,x + &x? (19)
with & small.

Obviously, the actual slope on the logit scale, B, + 26x,
changes as we move along the curve. For any 0 <y <1,
B, is equal to the actual slope at some point along the
curve. Denote this value by x = x,. Let x, be the expected
value of x in the control population and let x, the expected
value of x in the case population. We shall assume that
B, > 0 so that x, < x,. It turns out that x, always lies
between x, and x,.and that x, increases as y increases
from 0 to 1. Recall that survey weighting corresponds to
y =W, and sample weighting to y =0, =n,/n.
Typically, W, is much larger than ®, so that survey
weighting gives an estimate of the slope at larger values of
x, where the probability of a case is higher, while the slope
estimated from sample weighting is closer to the average
value of x in the population. Figure 1, adapted from Scott
and Wild (2002), illustrates the position in two scenarios,
one with positive curvature and one with negative, based
roughly on Example 2. The value of & is chosen so that it
would be detected with a standard likelihood ratio test about
50% of the time if we took simple random samples of
n, = n; = 200 from the population.

Positive Quadratic
logit(x) = By + 2x — 0.3x?

@) B, = 9.1

1 in 400

() By = 9.4

3 Population
Equal
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Figure 1. Comparison of population and equal weights.

Statistics Canada, Catalogue No. 12-001



130

In both scenarios, the value of [, is set so that the
proportion of cases in the population is 1 in 400, i.e., so that
W, = 0.9975. The overall density of x is shown at the top
of the graph and the conditional densities for cases and
controls are shown at the bottom. Values of x, and B.; are
shown for y = W, (labeled “population”) and y = 0.5
(labeled “equal”). The latter value corresponds to sample
weighting if we draw equal numbers of cases and controls.
Clearly, survey weighting is estimating the appropriate
slope for values of x further out in the upper tail of the
distribution (i.e., for individuals at higher risk) than equal
weighting in both scenarios.

Note that if we took simple random samples of 7, =
n, = 200 from the population in Figure 1 (a), the relative
efficiency of survey weighting is only about 16%, and the
small sample bias is 0.24. In this case, even if we take the
population value as our target, the survey weighting leads to
a larger mean squared error than sample weighting,

More results are given in Scott and Wild (2002) where
we also look at the effect of omitted covariates. This turns
out to have a similar, but somewhat smaller, effect to
omitting a quadratic term.

Which is the right value of y to use? That clearly
depends on what we want to use the resulting model for. If
our primary interest is in using the model for estimating
odds ratios at values of x where the probability of a case is
higher, and the sample is large enough so that variance and
small sample bias are less important, we might use
population weights. For smaller sample sizes, or if we are
interested in values of x closer to the population mean,
sample weights would be better. A value intermediate
between population weighting and sample weighting might
sometimes be a sensible compromise. For example
trimming the weights to 10:1 (i.e., setting y ~ 0.91) in the
example, instead of 1:1 (sample weighting) or 400:1
(population weighting), leads to an efficiency of 70% and a
small sample bias of 0.04. The corresponding values for
population weighting were 16% and 0.24. The value of
Xpo; lies almost exactly half way between x5 and x; 49;s.

9. Case-Control Family Studies

If we are primarily interested in the parameters of the
marginal model (1), then the methods that we have discussed
in previous sections are simple to implement and reasonably
efficient. Fully efficient methods require building parametric
models for the within-cluster dependence and the extra effort
that this would entail is rarely worthwhile. However, there
are situations where the dependence structure is of interest in
its own right. In particular, it has become increasingly
common for genetic epidemiologists to augment data from a
standard case-control study with response and covariate
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information from family members, in an attempt to gain
information on the role of genetics and environment. This
can be regarded as a stratified cluster sample, with families
as clusters, and the intra-cluster structure is of the primary
focus of attention here. The following example is fairly

typical.

Example 3.

Wrensch, Lee, Miike, Newman, Barger, Davis, Wiencke
and Neuhaus (1997) conducted a population-based case-
control study of glioma, the most common type of
malignant brain tumor, in the San Francisco Bay Area. They
collected information on all cases of glioma that were
diagnosed in a specified time interval and on a comparable
sample of controls obtained through random digit dialing.
They also collected brain tumor status and covariate
information from family members of the participants in the
original case-control sample. There were 476 brain cancer
case families and 462 control families in the study.

We could use the methods that we have been discussing
to fit a marginal model for the probability of becoming a
glioma victim but a major interest of the researchers was the
estimation of within-family characteristics. One way of
approaching this would be to fit a mixed logistic model with
one or more random family effects.

Note that, strictly speaking, the original sampling scheme
in Example 3 is not included in this case-control set-up. The
stratification here is related to the response variable but not
completely determined by it. Stratum 1 contains the 476
families with a case diagnosed in a particular small time
interval while Stratum 2 contains the remaining 1,942,490
families, some of which contain brain cancer victims.

In Neuhaus efal. (2006) we develop efficient semi-
parametric methods for stratified multi-stage sampling in
situations where the stratification depends on the response,
possibly in an unspecified way that has to be modeled, and
observations within a primary sampling unit are related
through some parametric model. The estimates require the
solution of p +1 estimating equations, where p is the
dimension of the parameter vector. The covariance matrix
can also be estimated in a straightforward way using an
analogue of the inverse observed information matrix. The
whole procedure can be implemented using any reasonably
general maximization routine but this still requires some
computing expertise.

We could also fit the same models using survey weighted
estimators, which has the big advantage of requiring no
specialist software. In our example, case families would
have weight 1 and control families would have weight
1,942,490/462 ~ 4,200. With such a huge disparity, we
might expect the weighted estimates to be very inefficient
indeed. Unfortunately it turned out to be almost impossible
to fit an interesting model for which the weighted estimates
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converged. One problem is that the weighted estimates are
based almost entirely on the control sample and there is very
little information about family effects in the control families.
(Another problem is that we did not have information on
age for family members and any model without age was
grossly mis-specified!) For this reason, we had to resort to
simulation which is far from complete at this stage. It seems,
however, that the efficiency of weighted estimates is less
than 10% of the efficient semiparametric estimates here.
More details are given in Neuhaus et al. (2002, 2006).
Although our simulations are at a very early stage, it is
possible to draw a few tentative conclusions. The main one
is that within-family quantities are very poorly estimated,
even using fully-efficient procedures. Case-control family
designs, where the information on family members is
obtained as an add-on to a standard case-control design,
simply do not contain enough information to estimate the
parameters of interest to genetic epidemiologists unless the
associations are extremely (even unrealistically) strong. (I
should note that not all genetic epidemiologists would agree
with this.) More efficient variants are possible, however. For
example, if we can identify families containing more than
one case, then it is possible to get much greater efficiency
by heavily over-sampling such families. In essence, we
would be taking the family as the sampling unit, defining a
‘case family’ as one containing multiple individual cases
and then taking a case-control sample of families. This is an
important area where a lot of work still needs to be done.

10. Conclusion

The population-based case-control study is one of those
subjects where practice has forged ahead of theory. As far as
I know, the only book that discusses the topic in any depth
is Korn and Graubard (1999, Chapter 9). One aspect that has
received a reasonable amount of theoretical attention in the
literature is stratification. Efficient procedures for
incorporating stratifying variables in the analysis have been
developed by Scott and Wild (1997), Breslow and
Holubkov (1997), and Lawless et al. (1999), among others,
when the variables can take only a finite set of values.
Breslow and Chatterjee (1999) have considered how best to
use such information at the design stage. The extension of
all this (both analysis and design) to situations where we
have information on continuous variables such as age for all
members of the population is an area that still needs work.
Much less has been written on the effect of clustering, even
though multi-stage sampling is in common use. Exceptions
are Graubard et al. (1989), Fears and Gail (2000) and Scott
and Wild (2001a). Perhaps this paper might stimulate more
work on an important topic. In particular, since the essence
of the problem boils down to estimating two population
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means (see equation (8)), it should be possible to transfer a
lot of the expertise about efficient survey design across to
this problem.
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Using Calibration Weighting to Adjust for Nonresponse and
Coverage Errors

Phillip S. Kott '

Abstract

Calibration weighting can be used to adjust for unit nonresponse and/or coverage errors under appropriate quasi-
randomization models. Alternative calibration adjustments that are asymptotically identical in a purely sampling context can
diverge when used in this manner. Introducing instrumental variables into calibration weighting makes it possible for
nonresponse (say) to be a function of a set of characteristics other than those in the calibration vector. When the calibration
adjustment has a nonlinear form, a variant of the jackknife can remove the need for iteration in variance estimation.

Key Words: Prediction model; Quasi-randomization model; Quasi-randomization consistent; Instrumental variable;

Generalized raking.

1. Introduction

Calibration weighting was originally developed as a
method for reducing sampling errors while retaining
randomization consistency. Deville and Sarndal (1992)
demonstrated that many alternative forms of calibration
weighting are asymptotically identical in the sampling
context. This lead to a breakthrough in our understanding of
common weight adjustment methods like raking that do not
appear in generalized-regression (GREG) estimator format.

Folsom and Singh (2000) showed that calibration
weighting can also be used to adjust for known coverage
errors and/or unit nonresponse under appropriate quasi-
randomization models. Their work is not in the refereed
literature. The heart of this article repeats key results in
Folsom and Singh including a necessary modification of the
Deville-Sérndal approach to model variance/randomization
mean-squared-error estimation in this expanded context. An
earlier, strictly linear version of calibration weighting for
unit-nonresponse adjustment can be found in Fuller,
Loughin and Baker (1994). See also Lundstrém and Sérndal
(1999).

A distinction is drawn between the prediction model
usually underpinning calibration and the quasi-randomiza-
tion model in Folsom and Singh. Unlike in Folsom and
Singh, however, both properties are explored here. Further-
more, the explanatory variables in the quasi-randomization
model are allowed to differ from the calibration variables.
This is likewise allowed in Lundstrém and Sérndal.

A new jackknife is proposed which is analogous to the
Deville-Sarndal linearization variance estimator. It employs
replicate weights computed in one step even though the cali-
bration weights themselves may be determined iteratively.

After introducing the popular notion of calibration
weighting, Section 2 provides a review of the GREG special

case in a purely sampling context. Section 3 describes
Estevao and Sérndal’s (2000) extension of calibration
weighting in its linear form to include instrumental
variables. Section 4 expands Deville and Sarndal’s treat-
ment of calibration weighting to include the possibility of
instrumental variables. Section 5 reviews variance/mean
squared error estimation, proposing a new jackknife for
certain designs. Section 6 describes how calibration
weighting can be used to adjust for nonresponse. In this
context, alternative functional forms of calibration
weighting need no longer be asymptotically identical.
Section 7 discusses quasi-randomization models for
coverage errors, that is, frame under- or over-coverage.
Section 8 contains a small empirical example supporting the
new jackknife. Section 9 provides a discussion of alternative
approaches and areas for future research.

2. Calibration Weighting and
the GREG Estimator

Suppose we knew the selection probability, =,, for each
sample element & in the sample S. We can estimate any
population total, 7, = >, y,, where U denotes the popula-
tion, with the expansion estimator t, =2/ =
S v, /m,,where I, =1 when keS and O otherwise.
Treating the /, as random variables, it is easy to see that
t, ¢ 1s an unbiased estimator for 7',. Properties arising
when the /, are treated as random variables are called
randomization-based. We can also write ¢, , =Y, a,y, =
Ysa, v, where a, =1, /m, is the sampling weight of
element £.

Deville and Sarndal (1992) coined the term “calibration
estimator” to describe an estimator of the form
1, caL = 2s Wiy Where Ygwix, =%, x, =T, for some
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134 Kott: Using Calibration Weighting to Adjust for Nonresponse and Coverage Errors

row vector of auxiliary variables, x, =(x,;, ..., Xp, ), about
which T, is known. Since there is generally a continuum of
sets {w, |k € S} that satisty the calibration equation:
S wpx, = T ()
kes
Deville and Sarndal required that the difference between the
set of weights, {w, |k e S}, satisfying equation (1) and
{a,|k € S} minimize some loss function.
An alternative approach to survey sampling treats the y,
as random variables satisfying the linear prediction model:

V=X B+e, )

where  E(g,|[{x,,/,|geU})=0 for all keU. By
conditioning this expectation on the /,, we are assuming
the sampling mechanism can be ignored. This is a crucial,
and sometimes unreasonable, aspect of the (prediction)
model-based framework.

It is easy to see that ¢, ., is an unbiased estimator for
T, under the model in the sense that E, (t, ca—T,)=0
(suppressmg the conditioning for notational convemence)
the subscript € refers to treating the €, as random variables
(and the 7, as fixed constants).

For our purposes, the general(ized) regression or GREG
estimator has the form:

tnyREG = tny
-1
! !
+ (Tx_z akxkj(z Ckakxkxkj z G4 X Ve (3)
keS keS keS

where ¢, is an arbitrary constant which may or may not be
a function of x,, and lim, Y, ¢ XX, /N=A is a
positive definite matrix, where N is the size of U. This last
condition means that X c,a,Xx;x, will usually be
invertible in practice. We will assume that it is always
invertible for convenience.

The GREG estimator in equation (3) can be rewritten in
calibration formas ¢, Gppg = 25 Wy, Where

-1

w, =a, +{Tx - ajxjj{z cjajxjxjj Ca; X
Jjes

Strictly speaking, the w, are functions of the realized

sample, S, and the c,a,, but we suppress that in the notation

for convenience. Observe that the calibration weights can be

expressed as

we = a, (1+¢.x,q), 4)

where q=[(Z5a,¢,X)x,) ' T(T, - Zsax,)
vector, since X,q = q'X;.

Let us assume that reasonable regularity conditions hold
(see, for example, Kott 2004a for a more thorough treat-
ment) and the sample plan is such that ¢, -7, =

O,(N/ Jn), where n is the expected size of S (the actual
size can be random), Yga,x, —T, =0,(N/J/n), and

is a column
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~Yy e, x,f, =0,(N//n), where f, can be

%, (Xy ¢ Xx,)"' Sy ¢xly,, so that
YucxXe =0, and Ysa.cx,e, =0,(N/n). We can
express the error of ¢, Grpg a8

T

tnyREG 4y

=Z Wil —

s o X,y
X, or y,. Let e, =y,

Zyk

keS keU
=Y we, - e (since > wx = xkj

keS keU keS keU

1

= Zﬂkek + (T;& —Zﬂkxkj(z akckx;cxkj Z a,cxpe,

keS keS keS keS

_ z e,
keU

= z a.e, — z e, + O,(N/n). ®)

keS keU

It is now not hard to see that the GREG estimator is
randomization cons1stent that  is, plim,
[, greg —T,)/N]= Moreover, both the relative
randomization bias and relative randomization mean
squared error of the GREG estimator are order 1/n. Since
mean squared error = bias® + variance, we can conclude
that the randomization bias of the GREG estimator is
usually an asymptotically insignificant contributor to its
mean squared error.

3. Redefining Calibration Weights

In their original definition of calibration weights, Deville
and Sdrndal (1992) required that the set of calibration
weights, {w,|k €S} minimize some distance function
between the members of the set and the original sampling
weights, the «,, subject to satisfying the calibration
equation. As a result, the calibration estimator, ¢, ., =
> s W, ,, was both unbiased under the model in equation
(2) and usually randomization consistent.

Estevao and Sérndal (2002) suggested removing the
requirement that the calibration weights minimize a distance
function. Instead, they essentially proposed that the w, need
only satisfy the calibration equation and be of the
“functional form:”

w, = a,(1+h, q), (6)

where h, is a row vector with the same dimension as x,
such that g a,h,x, is invertible, and q is a column vector
of that same dimension. Equation (6) is a mild generaliza-
tion of (4) where h, effectively replaces ¢, x, .

It is not hard to see that q=[(Xsahx; Y
(T, —Xsa,x;)". Moreover, under mild conditions we as-
sume to hold, 7, ¢\ =Xs Wy =Zs @y, H(T, - Xsa;X;)
(Xsa;h'x; ) 'Ysa, h, y, is randomization consistent



Survey Methodology, December 2006

whenever ¢, , is. It is unbiased under the linear prediction
model in equation (2) when E(g;|{x,, h,|geS},
{l,lgeU})=0 forall keU.

This suggests another alternative definition of calibration
weights: a set of weights, {w, |k € S}, such that,

i. the w, satisfy the calibration equation for {x,|k U}
and,

ii. 7, cap =25 W)y is randomization consistent whenever
t, ¢ is under mild conditions.

That is the definition we will use. This broadened definition
of calibration weighting will prove very helpful when using
calibration to adjust for nonresponse or coverage errors.

It follows from our new definition that Estevao and
Sérdnal’s functional-form calibration is indeed a form a
calibration weighting. Borrowing from econometric theory,
the components of h, that are not linear combinations of
components of x, are called “instrumental variables.”

4. Possibly Nonlinear Calibration

Building on ideas in Deville and Sérndal (1992), we can
generalize the linear form for the calibration weights in
equation (6) to

Wi GEN = a, f(h, q* ), (7

where £ is a monotonic, twice-differentiable function with
F0)=1, f'(0)=1 (f'(0) is the first derivative of f
evaluated at 0), and q" is chosen so that the calibration
equation holds. Unlike the calibration-weight equation

above, the calibration equation itself, > w.x, =T,
remains linear. Note that since f(0)=1, /'(0)=1,
f(hq)=I+hq.

Strictly speaking, there should be an additional symbol
on w, ey (and later on w, [, ) to denote the particular
choice of h, . It has been dropped for convenience.

A solution, q", to equation (7) can often be reached
iteratively. One can start with q'” = 0; thatis, Y3 w"y,,
where w\”=a, f(0). For r=1,2,..., one then sets q"" =

q" " HIZ S g ) T (L -Zs wx,)', and

(’) = akf(hkq(’)) Iteration stops at »  when T, =
Z s w")x, for all practical purposes. One should be aware,
however, that there may not be a set of weights that can be
expressed in the form of equation (7) while satisfying the
calibration equation.

Note that q above equals the q in w, =a,
(1+h,q). A Taylor expansion around zero reveals
f(h,q")=1+h,q" +0,(1/n) under mild conditions, so
Sowi v = Ssw Vi +Op(N/n) = T, [1+0p(1/n)].
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Furthermore, it is not difficult to see that w, g =
w, n[1+0,(1/n)], an equality that proves helpful in
variance estimation.

The most common example in practice of a nonlinear fis
f(h,q)=exp(x,q), where the values of each of the
components of x,, denoted x,,...,xp, are either O or 1.
That is effectively the form of Deming and Stephan’s
(1940) raking weights computed via iterative proportional
fitting. Many have observed that the iterative routine
described above can be used even when the components of
x, are not binary as they are in Deming and Stephan. Note
that the generalized raking calibration weights that result are
always nonnegative.

5. Variance Estimation

Sérndal, Swensson, and Wretman (1989) proposed this
plug-in model variance/randomization mean-squared-error
estimator for 7, Grpg under an arbitrary sampling plan:

Vssw = kz: z [(my, _nknj)/nkj](wkrk)(wjrj)' ®)
eS jeS
The term derives from 7, being “plugged into” vygy In
place of the unknown e, =y, —x, (X, h)x,)"' X, hly, for
randomization-mean-squared-error estimation.

Paralleling arguments in Deville and Sérndal (1992),
Vesw also applies more generally to ¢, ,, Wwith calibration
weights defined by equation (7) with

Te = Vi — Xk(za/ J /J

Jjes

za/ J / (9)

Jjes

This is because w, gpy = W w1 +0,(1/0)], so
2sWi GeN@ = ZsWi_ LN e,+O0p(N/n) =Y sa.e,+Op(N/n).
The last step uses reasoning exhibited in equation (5) with
h; serving in place of the ¢ x .

In their article, Deville and Sérndal effectively replace
the a; in equation (9) with w;, =a, f(h; q’). A different
version is given in Demanti and Rao (2004) where the a;
in the equation are replaced by a;f'(h,q "). This author
noted in a comment accompanying the latter that all three
versions of the 7, are asymptotically identical since f(0) =
f(0)=1 and q" is asymptotically 0. These asymptotic
identities may no longer hold when calibration weighting is
used to adjust for nonresponse as we shall see in the
following section.

Developing asymptotic properties for vy, under
stratified simple random sampling is a simple matter. In this
context, Vygw collapses to

Vgr; = Z(n fn, =11) Y. (1-n,/N,)

keS,
2
x | wr =Y wr/n, |,
J€S,
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where S, denotes the sample of », units in stratum
o(a=1,...,4), and U, the stratum population containing
N, elements.

For a multi-stage sample it makes sense to allow the
possibility that ¢, and ¢, in the prediction model are
correlated when & and j are elements in the same PSU, but
not otherwise. When finite-population correction can be
ignored, the model variance of a calibration estimator is
approximately V, =%, ¢ E [(Zics0) w,g,)’] under mild
conditions, where S(i) is the set of sampled elements in
PSU i, and S’ is the set of PSUs selected in the first stage of
sampling.

The following variance estimator, not strictly equal to
Vesw- Often has good randomization and model-based pro-
perties (when the first-stage selection probabilities are all
small):

A

VsT2 = z (n, /[n, =11

a=1

. (10)

2
2 {Z Z Wk”k]
] JeS, keS,;

n

o

x 9 —[z W, T,

JES, keS(xj

where o denotes a first-stage stratum of PSU’s, n,, the
number of sampled PSU’s in stratum o, S, the set of
sampled PSU’s in o, and S,; the set of subsampled
elements from PSU j of stratum a. There can be many
stages of sampling involved.

It is not hard to show that vy, is asymptotically indistin-
guishable from the jackknife variance estimator:

z ([n, —11/n ){z (tv _CAL(aj)

JES,

tvCAL)Z}’ (1D

where 1, capj) = Zkes Wi Vo and the jackknife repli-
cate calibration weights are

Wk(otj): Wkak(otj) /ak +( z Xm - z W, [am(aj) /am ]ij

melU meS

-1
(z am(otj)h:nxmj ak(aj)h;c’ (12)

meS

where a;,;) =0 when k is in PSU j of stratum
o, @,y =a, when k is not in stratum o at all, and
Aoy = (g / [ny —1])a,  otherwise. The w,.; are
constrained so that >, _¢ Wecajy Xk = Zkev Xi forall oy.

Let S(a+) be the set of elements in stratum o (not
PSU’s like S,), and S(oy) the set of elements in PSU j of
stratum o.. Under mild conditions we assume to hold,
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ZU m z W [am(aj) ]Xm

= (na /[na _])(zs(aj)wkxk _ZS(OH—) WXy /not ) =
b, x,=0.,(N),

m(Otj) m m
and ZS am(otj) m€m ™=

As aresult,
by caL™ 1t caL = zs Wi(oj €k~ zs Wik

= (na /[na - 1])(ZS(11+) Wi€x /not - ZS(otj) Wkek)
+O0,(N/n*'?),

and v, = vep,[1+0,(1/x/n)] when plim,  (nvg,/N*)>
0.

The replicate weights defined in equation (12) do not
require iteration even when the calibration weights are
themselves produced that way. This is a great computation
convenience. It not only saves computer time, it avoids the
possibility that at iterative solution for the w, may exist
while one for the replicate weights does not.

0, (N/n),

=0,(N//n).

6. Unit Nonresponse

6.1 Quasi-randomization and Prediction Modeling

In this section we explore handling unit (whole-element)
nonresponse as an additional phase of Poisson sampling.
That is the essence of a quasi-randomization model. Each
element £ in the original sample, now denoted F, is assumed
to have a probability of response, p,. The probability of
elements & and j jointly responding is p, p;, and whether
element £ would respond (given a vector of covariates) is
independent of whether it is chosen for the original sample.

It is often possible to construct a set of weights so that the
calibration estimator is randomization consistent under the
quasi-randomization model. We are interested here in a
particular way of constructing those weights. To this end,
we assume that the quasi-randomization model is correct.
Each element has attached to it a row vector of auxiliary
variables, x,, for which 7, =3, x ; is known. Finally,
each p, is assumed to have the form:

pi=1/f(h, ), (13)

where ¢ is an unknown column vector, h, is a row vector
with the same dimension as x,, and Y5 a,h, x, /N, where
S now denotes the “subsample” of respondents, is invertible
both for the realized population size, N, and in the
probability limit.

The function f(-) in equation (13) is assumed to be
monotonic and twice differentiable. Its functional form is
known, but the value of the governing parameter, ¢, is not.
When plugged into the calibration-weight equation,
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w, =a, f(h,q), so that the calibration equation itself,
> wXx, =T  holds, f(h,q) implicitly estimates the
inverse of the element response probabilities. Unlike when
calibration is used to correct for Y. a,x differing from T,
due purely to sampling error, f(0) and f'(0) do not need
to be 1 nor does h, ¢ need to be zero.

The most obvious choice for h, when postulating the
response model in equation (13) is x, itself. In a common
example of calibration weighting for nonresponse, the
components of x, are indicator variables: x, =1 whenkis
in group g and zero otherwise. When the groups are
mutually exclusive, calibration weighting is the same thing
as reweighting within post-stratification classes. See, for
example, Sdrndal, Swensson and Wretman (1992, page
585). The prediction model usually underpinning calibration
(the prefix “prediction” is needed to distinguish this model
from the quasi-randomization one) assumes that every
element £ in group g, whether or not it would respond, has a
common mean: £,(y,)=p,. The quasi-random response
model is analogous: p, =1/¢,. The two models are
conceptually very different, however.

When the groups are not mutually exclusive, raking is
one method of determining calibration weights. There are
others depending on the exact form of the assumed response
function f(). The prediction model remains linear,
E.(y,)=x,PB, while the response model that leads to
raking, p, =exp{—x, 6}, does not. Berry, Flatt, and Pierce
(1996) provides an example of using raking to adjust for
nonresponse.

In many applications of calibration weighting the
components of x, are continuous or semi-continuous rather
than dichotomous. In an annual crop survey, for example,
let x,, be the quantity of corn harvested in the previous
census of agriculture by farm £, x,, be the farm’s harvested
wheat, x,, its harvested potatoes, and so forth. The annual
crop survey has an assumed prediction model for farm £’s
planted corn acres, y,,, of the form: y,, =x,B,, +¢,. The
subscript, 1, is corn-specific. There are other survey values
of interest, like planted wheat acres, and potentially assumed
prediction models for each.

The quasi-random response model for the crop survey
depends on assumptions about f(-) and h, in equation
(13) with h, possibly equal to x,. Unlike the prediction
model, the same assumed quasi-randomization model
applies for all survey variables.

Promising choices for f(-) are exp(-) and 1+ exp(),
the latter corresponding to a response probabilities being fit
by a logistic function of h,¢. It may also be reasonable to
assume h, =x2k for A <1. In particular, setting A =0
means that the probability of farm & responding to the
annual crop survey depends only on whether the farm had
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corn, wheat, or potatoes on the previous census of
agriculture rather than on how much of those crops it had.

In the crop-survey example, the components of x, from
the previous census were the best predictors available for
the corresponding annual survey values before sampling.
Whether farm £ responds to the survey, however, is more
likely a function of the farm’s current planted corn acres, if
any, than on a predetermined proxy for that value. As a
result, placing survey values in h, rather than corres-
ponding census values is tempting. There is a theoretical
problem with this procedure as we shall see.

Given an f(-), the iterative method described in Section
4 will often be able to uncover a row vector q such that
T, =%,a,f(h,q)x,. When that happens, estimating T,
with 7, . =2, Wy, where w, =aq,f(h.q), will have
good properties under the linear prediction model:
Vi =X, B+e, where E(g;[{x,, h,, I, |geU})=0 for all
keU,I, =1 if element k is both in the original sample and
responds, 0 otherwise.

Prediction-model unbiasedness is simply a result of the
weights satisfying the calibration equation. Note, however,
that if components of h, come from the survey rather than
x,, the prediction-model assumption that E(g,|h,)=0
can be problematic. At the extreme, consider the case where
one such component is y, itself. Usually, E(g,|y,) is not
0. In the crop-survey example described earlier, y, can be
the annual corn acres planted on farm . Putting this value in
h, makes the associated calibration estimator for corn
prediction-model biased.

When the prediction model is correct (treating
E(gi|{x,, h,, I,|geU})=0 as an integral part of the
model), however, calibration weighting based on any choice
of f(-) will produce estimators with good prediction-
model-based properties. These estimators will also have
good quasi-randomization properties when the response
model in equation (13) is correct for that choice of f(-). In
some sense, one model provides protection against the
failure of the other. See Kott (1994).

As noted, the prediction model is more likely to hold
when h, =x,. Even then, sometimes the ¢, in the model
in equation (2) satisfy E(g|{x,|geU})=0, but not
E(gi|{x,I,|geU})=0; that is to say, the sampling
mechanism - including response — is not ignorable with
respect to the prediction model.

We can factor /, into I,,1,,, where [, =1 if and only
if k is in the original sample, and /,, =1 if and only if £
would respond if sampled. The interested reader can
confirm that calibration weighting provides some protection
against bias if the prediction model in equation (2) holds
when  E(g;[{x,, h,,[,,|geU})=0; that is when the
response mechanism is ignorable with respect to the
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prediction model but not necessarily the original sampling
mechanism.

6.2 Quasi-randomization Mean Squared Error
Estimation

Whether or not ¢, ., can reasonably be called
prediction-model unbiased has no effect on its quasi-
randomization-based properties. Note that h,¢ are h, q are
scalar values not vectors. Since 7, =2, q, f(h,q)x,, our
assumptions and the mean value theorem (f(h,¢)=

f(h,q)+ f'(0,)(h,¢—h,q)) reveal
=Y a. f(hd)x, =D a[f'©,)h,(q-)]x,

keS keS
~0,(N /)

for some scalar 0, between each h,q and h,¢. From this
we see that if ¥ a, f'(h,$);h’x; /N is invertible both for
the realized N and at the probability limit (recall that £ is
monotonic so f” is never zero), then

q-9= {Z a,f'(h;q)hx; } {Tx -2 af (hQ)x, }

Jjes ieS

=0,(1/\/n)

- {[z a/'f'(hjd))j h;'xj :l_l}' |:Tx - z aif(hid))xi:l'
+0,(1/n).

The estimator ¢, ., hasan error of

L, car _Ty = zakf(hkq)yk - z Vi

keS keU

= z a, f(h,q)e, — z €
where
-1
o=yi=% (D /o) phix; ) Y (hé)p by,
and p, =1/ f(h,¢). The ¢, are again unknown. They have
been design so that Yga,f'(h,¢)hie, = O,(N//n).

Continuing:

tnyAL - Ty

= z akf(hk¢)ek _z e+ z a, {f(hkq) - f(hk¢)}ek

keS keU keS

=D a,f(hd)e, D e+ a.f'(ho)h (q-0de,
+ Op(N/n)

= z a, f(h,d)e, — z e +(q- ¢)'z a.f'(h,d)he,
+ Op(N/n)

=2 a4, f(hd)e,— D e+ Op(N/n). (14)

Thus, ¢, -, is quasi-randomization consistent under
mild conditions whenever ¢ = ¥ a,f(h,d)y, is.

To estimate the quasi-randomization mean squared error
of t, ca (ie., the estimator’s randomization mean squared
error under the response model), we first note that the
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probability that elements k£ and j, k # j, are both in the
respondent subsample is n:;. =, p.p;- Let nz =7, P,
and recall that o, =1/m, and 1/p, = f(h,¢). From
equation (14), we see that the quasi-randomization mean
squared error of 7, ., 18 approximately

El[(tLCAL - Ty )2]
zz z (nzj - nan e, /nZ)(ej/nj)

keU jeU
=Y (I-m)e/m,
keU
+ 0 (= mm e /m e /m,). (15)
keU jeU
k#j
If the original sample is Poisson, then v, =

> (w,f -w, )rk2 with

Jjes Jjes

e =V =% |:z ajf'(hjq)h;xj:| z ajf'(hjq)h;yj’ (16)

serves as both a reasonable estimator for prediction-model
variance and quasi-randomization mean squared error under
mild conditions, since w, 1/, and 7, ~e,. A close
relative of the non-intuitive sample residual in equation (16)
can be found in Folsom and Singh (2000). See Kott (2004a)
for a further discussion of v,, in a purely sampling context.
For a general design, we can get close to a good
variance/mean-squared-error estimator with

2 2
vcom :z (Wk - Wk )rk
keS

DIDNCHEET RIS AN
keS jeS
k#j

The right hand side of equation (17) estimates the right hand
side of equation (15) with 7, replacing e¢,. Note that
Yy (I-m)e; /m, in equation (15) is estimated by
> (Wi —w, ) rather than Yg w; (1—, )r7, which would
make v,,, more consistent with vgg,, in equation (8). This
substitution results in a variance estimator with good
prediction-model-based properties when the ¢, are
uncorrelated, and o} =x,&, for some . It can be made
even in the absence of nonresponse.

When the actual sample is multistage, and the first stage
selection probabilities are ignorably small, vy, in equation
(10) can be used as the variance/mean-squared-error
estimator with 7, defined once more by equation (16).

When f'is linear, f'(0) =1, and the 7, in equation (16)
are computed as if there were no nonresponse. The same
holds true for the variance/mean-squared-error estimator
Vsr,. Unfortunately, this f* corresponds to an awkward-
looking response-probability function: p, =1/h, ¢. Fuller,
Loughin and Baker (1994) made these observations for the
case where h, =¢,x,.
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The jackknife, v,, in equation (11) can be computed
with these jackknife replicate weights:

Wk(otj): Wkak(otj) /ak+ ( z Xm - z Wi [am(aj) /am]xmj

meU meS

-1
X { z am(otj)f'(hm q)h:nxmj ak(aj) f'(hk q)h;{ s (18)
meS

an obvious generalization of the jackknife replicate weights
in equation (12). Again when f'(®)=1v, can be
computed as if there were no nonresponse.

7. Coverage Modeling

Folsom and Singh (2000) pointed out that the treatment
of nonresponse through calibration weighting can also be
used to adjust for undercoverage. In the context, the quasi-
random phase as sampling occurs conceptually before the
actual sample is drawn. The population associated with the
sampling frame is assumed to be a Poisson sample from a
hypothetical complete population for which the vector T,
must be known. The frame population becomes F, while the
hypothetical complete population is U. The probability that
element k e U is in F is assumed to be modeled correctly
by equation (13). If the first (from U to F) and second (from
F to S) phases of sampling are independent, then all the
theory developed for using calibration weighting to handle
nonresponse carries over to handling undercoverage.

It should be noted that coverage adjustment through
calibration is a extension of the well-known practice of
coverage adjustment through post-stratification often used
with telephone surveys. As with the post-stratification
special case, one needs quantities for the calibration targets
for U that can be assumed to be free of error or to have very
little mean squared error compared to the calibration
estimators themselves.

Folsom and Singh noted that overcoverage (duplication)
or a combination of under and overcoverage can be handled
with their methodology. The definition of p, in equation
(13) becomes the expected number of times k is in the
frame, which can now exceed 1 due to potential duplication.

Folsom and Singh further suggested that f(-) have the
flexible form:

F(x,0) = U(C-L)exp(x,0)+ LU -C)
(U —C) +(C - Lyexp(x,9)

where L>0,1<U <o, and L < C<U are predetermined
constants. They call this the “General Exponential Model”
or “GEM.” Observe that when C=1,U =, and L =0,
p.=1/f(x,0)=exp(—x,¢). Similarly, when C=2,
U=w, and L=1, p, =[1+exp(x, ¢)]; that is to say, the
probability of coverage (or response) is logistic. The values

, (19)
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L and U serve as bounds on the calibration adjustment,
f(), while C = f(0) is effectively its center.

The authors made the calibration adjustment in GEM
even more flexible by postulating three classes of sampling
units, each with its own set of U, C, and L values. They
proposed its use both for coverage-error and unit-non-
response adjustment

8. A Small Empirical Example

Since the jackknife replicate weights expressed in
equation (18) are new, it is prudent to investigate whether
they actually work with real data. To this end, the author
took the MU281 data from Sirndal, Swensson and
Wretman (1992) and replicated it 20 times (so N = 5,620).
Using stratified simple random sampling, 16 units were
selected from each of the eight unequally-sized strata. The
variable RMTS85 served as y, and P75 as x, in x, =
(1,x,). Each of the 128 sampled units was given a
probability of being in the respondent subsample, S, which
decreased with the size of x,; in particular, p, =
exp(—0.35x, /M ), where M was the population mean
of the x,. In 1,600 simulations, the size of the § ranged
from 78 to 110, with an average of approximately 93.8.

The total 7, was estimated two ways, with 7, |, =
s a,(1+x,q)y, and with 7, pyp =35 a; exp(x, ")y
where q and q“” were respectively selected so that the
calibration equation held. The former was a GREG
estimator, while the latter was a generalized raking esti-
mator. Both estimators were unbiased under the implied
prediction model (y, =x,pB+¢,), but only ¢, .y, was
randomization consistent under the correct respohée model.
The GREG implicitly assumed p, = 1/(¢\"™ +¢{""Vx, )
for unknown ¢ and ¢{""™ .

The small size of the sample relative to the population in
each stratum allowed the ignoring of finite population
correction in variance/mean-squared-error estimation (called
“variance estimation” from now on). Variances were
estimated using, 7, the linearization estimator, vgr,, Iin
equation (10) with 7, defined by equation (16), and, i, the
proposed jackknife, v,, in equation (11) with replicate
weights defined by equation (18). To make the jackknife
computations easier, the 16 samples in each stratum were
randomly assigned to one of four clusters, so that only 32
jackknife replicates had to be computed.

For comparison purposes, a better version of the
linearization variance estimator, labeled vgp,.,, was also
computed with 7  replaced by ¢ =y, — X,
(Zo f'(x;0)px)x,)" Ty f'(x,0)p;X,y;, where ¢ and
p, were known. In practice, ¢, is rarely known, but
computing VsT2(0) is useful here for comparison.
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One should note that computations of 7, and e, were
slightly different depending on whether the variance esti-
mator for 7, , or for ¢, gy, was of interest. For 7, |y,
f'(xj ¢)= f'(xj Q=1 for f, Bxp> f'(xj q(e)@) =
exp(qu(e"p)), and f'(x;0)=1/p,.

Table 1 displays the empirical means (the mean over the
1,600 simulations) of the two estimators for 7, normalized
so that 7, =100. Although both are close ‘to unbiased,
t, un 1S significantly different from 100 at the 0.05 level;
trvaXP is not. This is not surprising, since only the latter is
based on the correct response model.

The variance estimators and empirical mean squared
errors of each estimator were normalized so that the
empirical means of the respective vgr,,,’s were 100.
Neither  vgp,,, had an empirical mean significantly
different from the empirical mean squared error (EMSE) of
the associated estimator. This was a bit disappointing. It
seems that although ¢, |, had a significant empirical bias,
this bias was such a small component of the estimator’s
mean squared error, that the difference between its EMSE
and the empirical mean of vg,., Wwas not significant.

The vgry,, were chosen as benchmarks for the table
rather than the empirical mean squared errors because each
Vsra(e) had roughly half the empirical standard error of the
corresponding EMSE (which itself was the average of 1,600
squared differences) and correlated more strongly with the
variance estimators. The ¢#-values for this part of the table
were also computed with respect to the vgr,,,.-

The two linearization variance estimators had sur-
prisingly large downward biases. Apparently, there was a
tendency for unusually large w, [ and w, yp to cause
associated 7, to be appreciably smaller than e, in absolute
terms. The problems associated with unusually large w, |
and w, g Seem to be more muted with the jackknives.

To speed up the asymptotics of the linearization variance
estimators (i.e., reduce the difference between r, and ¢, ),
an ad-hoc adjustment of v¢;, was computed by replacing
each r with 7 giuseq) =7 /@, Where o, =1-
%, (Ssa, £1(5,9) X)x,) " a f'(x Q) X} = 1+ O,p(1/n).
Observe that under the prediction model with the g,
uncorrelated and E(g}) = o3, E (rkz(adjusted)) ~c;. The near
equality is exact when all the a,f "(x q) and o,
respectively, are equal.

The adjusted vqp, forboth #, | and ¢, .y, remained
biased downward, while the v, were biased upward by a
slightly smaller amount. Although these biases were
significant, they were reasonably small (from 4.5 to 11.2%)
and suggest that the variance estimators may have indeed
been asymptotically unbiased as theoretically demonstrated
in previous sections.

Using vgry,, as an efficient proxy for EMSE, the
empirical mean squared error of ¢, .y, which incorporated
the correct response model, was more than 13% larger than
that of the 7, |, which did not. One should not generalize
broadly based on one data set involving only two calibration
variables, however. See Crouse and Kott (2004) for a
different set of results.

Table 1
Empirical Means of Estimators Based on 1,600 Simulations*

Empirical mean (standard error)

t—value (two-sided significance)

The Estimators for 7,,(7, =100)

I, LN 99.84 (0.06)
Iy Exp 100.04 (0.06)
Variance Estimators for ¢, 1 (Epmp (VsT2(c)) =100)
VsT2 83.59 (1.53)
VST2(adjusted) 95.53 (1.80)
vy 104.69 (2.28)
EMSE 9935 —
Variance Estimators for 7, pxp(Egmp(VsT2(e)) =100)
VsT2 73.12 (1.54)
VST2(adjusted) 88.79 (1.98)
vy 107.00 (2.73)
EMSE 101.21 -
Other Statistics

relvar(vSTz(g)[LIN]) 0.051 —
relvar(vSTz(g)[EXP]) 0.059 —

(VSTZ(e)[LIN] - VSTZ(e)[EXP])

(Eemp (Vs2(e)EXP])

~0.1340 (0.010)

—2.79 (0.02) difference from
0.58 (0.56) T,
—19.96 (<0.0001) difference from
—6.09 (<0.0001) VST2(e)
3.60 (0.0003)
—-0.18 (0.85)
—18.22 (<0.0001) difference from
—8.57 (<0.0001) Ver
4.09 (< 0.0001) ©
0.33(0.74)
—13.87 (<0.0001)

* In four additional simulations, convergence was not reached in 10 iterations for ¢, pyp. They were excluded from the

analysis.
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Whether or not one is better off incorporating the correct
response model in the calibration estimator, if one does so,
then the variance estimators discussed in the previous
section, perhaps with the linearization estimator adjusted as
suggested in this section, appear to be serviceable.

A second set of 1,600 simulations (not displayed) were
done using the same population and stratified sampling
design but with each sampled element given a 70% chance
of being in the respondent sample (the average respondent
sample size was roughly 89.8). In this set of simulations,
both estimators for T, are randomization consistent under
the response model. Consequently, it is not surprising, that
the empirical means of ¢, | and ¢, .y, were virtually
identical (within 0.01% of each other) as were their
empirical mean squared errors (within 1% of each other).
The empirical means of each pair of variance estimators
(e.g., varg, for ¢, v and 7, .y,) were likewise very
close (within 1% of each other). The relative bias of the
adjusted vy, (compared to varg,,) was —1.3% when
estimating the variance of ¢, ; and -2.2% when esti-
mating the variance of 7, .,,. The relative biases of the
unadjusted linearization variances were —9.0% and—10.3%,
respectively. The relative bias of both jackknives was 3.6%.

9. Discussion

9.1 Estimating a Response Model Explicitly

When faced with unit nonresponse, many have attempted
to estimate the element probabilities of response, p, =
1/f(h,¢), directly. This method requires one to have
information on h, for every element in the sample whether
it responded to the survey or not, but h, need not have the
same dimension as X,. The direct-adjustment method is
generally not available for handling coverage errors.

Fuller (2002) noted that there can be an extra term in the
quasi-randomization mean squared error of ¢, gppg =
Ysa v + (T, —Xs aj'xj) (s Cjaj'x;'x*j)_lzs Cka:X;cxk’
where S is the respondent subsample, a, = a,[1+ f(h,q)],
and q is a consistent direct estimator for the quasi-random-
ization model parameter, ¢. This does not imply that direct
estimation of the response model based on a given f(-) and
h, is less efficient than analogous calibration when h, has
the same dimension of x,. See Kim (2004) for a suggestion
otherwise. Nevertheless, the convenience of incorporating
nonresponse adjustment into calibration is appealing when
variance estimates need to be produced.

A reasonable compromise is to choose the form of f(-)
and h, by modeling the response behavior of the entire
sample and then estimating the parameter of f(-) implicitly
through calibration. This compromise also overcomes a
striking weakness of using calibration weighting to adjust
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for nonresponse (as well as for coverage errors). The
choices for f(-) and h, are motivated primarily by plausi-
bility and convenience and not by a statistical analysis of the
data.

9.2 Response Homogeneity Groups

To control the magnitude of the weight adjustment due to
nonresponse, Little (1986) recommended that one estimate
q explicitly and then divide the sample into C mutually
exclusive groups based on the sizes of the fitted f(h, q)
values. One then computes the adjusted weight for each
element & in group ¢ as with post-stratification: w, ,p; =
(Zre) Wy ! Zsey W)W, where F is that part of the
original sample in group ¢, S(c) is the subsample of F{c) that
respond, and w;, is the sampling weight assigned to element
k after sampling but before quasi-random subsampling. This
approach assumes that each element in a group has
(roughly) the same probability of response, hence the term
“response homogeneity group.”

An alternative way of incorporating fitted f'(h,q)
values into the estimation based on methodology developed
in the text follows. Divide the fitted values into P groups
based in their sizes, where P is again the dimension of x,,
and let d, be a row vector of indicator variables for the P
cells. By setting each w, = g[1+(T,-Xsa;x;)x
(Xsadx; )"'d}], one computes a set of weights for the
respondent subsample that, unlike {w, ,,} above, satisfies
the calibration equation for the respondent sample. Because
of the nature of d,, this linear method returns the same set
of calibration weights as fitting w, = a, exp(d,f) would —
if both produce a set of weights. Note that since calibration
weights can be negative with the linear method, it may be
able to find a set that the generalized raking method cannot.
The linear method effectively scales the a, —value for every
element in the same group by a fixed amount. Thus, it may
not produce surprisingly small or surprisingly large weights
when the dimension of x, is small compared to the sample
size.

9.3 Breaking Up Sample and Nonresponse
Calibration

In the previous section we noted that it is possible for
components of h, in equation (13), the quasi-random
response model, to be unknown before enumeration. When
such an h, is used in calibration, it might no longer to
reasonable to assert that the resulting ¢, ., is prediction-
model unbiased. This is particularly troublesome when
nonresponse is modest compared to the sample size. An
intriguing idea is to calibrate in two phases. The first phase,
sample calibration, adjusts for the difference between T,
and Y, a,x,, and would not include any components in h,
unavailable at the time of sampling. The second phase,
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nonresponse calibration, adjusts for the difference between
Yra;X, and Ygax, and would include component
variables only available after the respondent subsample is
enumerated.

A more thorough analysis of this idea must wait for
another time.

9.4 Work at NASS

The National Agricultural Statistics Service (NASS) used
variants of the Fuller et al. (1994) approach for handling
undercoverage in the 2002 Census of Agriculture (see Fetter
and Kott 2003) and for adjusting an agricultural economics
survey with large nonresponse to match totals from more
reliable surveys (see Crouse and Kott 2004). In this
approach, f(-) has the form:

L when x,6<L
f(x,¢) =49x,6 when L<x,6<U (20)
U when x,6>U,

which truncates linear calibration at pre-specified values, L
and U, to control the size of the weight adjustment. Note
that when f()=U or L, f'(-)=0. Unlike the calibration
adjustment in equation (19), f(-) in equation (20) is not
twice differentiable at L or U. This does not cause a problem
in practice.

The agency’s original justification for calibration in these
contexts was based on prediction-modeling. Equation (20) is
simple to implement and appears to produce weights within
an acceptable range more often than readily available
alternatives.

NASS is investigating the following questions: How
sensitive is ¢, ., to the choice of f(-) in practice? Would
a different choice for f(-) result in less bias, and if so,
would the reduction in absolute bias translate into a lower
mean squared error? What would be the effect of replacing
some component of the vector of calibration variables with a
better predictor of nonresponse/undercoverage?
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The Importance of Modeling the Sampling Design in
Multiple Imputation for Missing Data

Jerome P. Reiter, Trivellore E. Raghunathan and Satkartar K. Kinney '

Abstract

The theory of multiple imputation for missing data requires that imputations be made conditional on the sampling design.
However, most standard software packages for performing model-based multiple imputation assume simple random
samples, leading many practitioners not to account for complex sample design features, such as stratification and clustering,
in their imputations. Theory predicts that analyses of such multiply-imputed data sets can yield biased estimates from the
design-based perspective. In this article, we illustrate through simulation that (i) the bias can be severe when the design
features are related to the survey variables of interest, and (ii) the bias can be reduced by controlling for the design features
in the imputation models. The simulations also illustrate that conditioning on irrelevant design features in the imputation
models can yield conservative inferences, provided that the models include other relevant predictors. These results suggest a
prescription for imputers: the safest course of action is to include design variables in the specification of imputation models.
Using real data, we demonstrate a simple approach for incorporating complex design features that can be used with some of
the standard software packages for creating multiple imputations.

Key Words: Complex sampling design; Multiple imputation; Nonresponse; Surveys.

1. Introduction

Typically in large surveys, less than 100% of the sampled
units respond fully to the survey. Some units do not respond
at all, and others respond only to certain items. One
approach to handle such nonresponse is multiple imputation
of missing data (Rubin 1987). It has been used in, for
example, the Fatality Analysis Reporting System (Heitjan
and Little 1991), the Consumer Expenditures Survey
(Raghunathan and Paulin 1998), the National Health and
Nutrition Examination Survey (Schafer, Ezzati-Rice,
Johnson, Khare, Little and Rubin 1998), the Survey of
Consumer Finances (Kennickell 1998) and the National
Health Interview Survey (Schenker, Raghunathan, Chiu,
Makuc, Zhang and Cohen 2005). Multiple imputation also
has been suggested to protect confidentiality of public-
release data (Rubin 1993; Little 1993; Raghunathan, Reiter
and Rubin 2003; Reiter 2003, 2004, 2005). See Rubin
(1996) and Barnard and Meng (1999) for a review of other
applications.

Multiple imputation, in theory, conditions on the
sampling design when deriving methods for obtaining infer-
ences from multiply-imputed datasets (Rubin 1987). How-
ever, imputers seldom account for complex sampling design
features, such as stratification and clustering, when using
available software packages to construct imputation models.
They instead use multivariate normal or general location
models (e.g., the software NORM written by Joe Schafer),
or use sequential regression models (Raghunathan,

Lepkowshi, van Hoewyk and Solenberger 2001). These
methods can be modified to incorporate design features, but
this is infrequently done.

This paper has two objectives. First, we illustrate the bias
that can arise when imputers fail to account for complex
design features in imputation models. To do so, we simulate
multiple imputation in two-stage, stratified-cluster samples.
The simulations indicate these biases can be severe, even
when using design-based estimators in multiply-imputed
data sets with moderate amounts of missing data. Second,
we suggest two simple approaches to account for design
features in imputation models. The first approach, which is
relatively easy to implement, includes dummy variables for
stratum or cluster effects in the imputation models. The
second approach, which is computationally more complex
than the first, uses hierarchical models where (i) the effects
of clustering are incorporated using random effects, and (ii)
the effects of stratification are incorporated using fixed
effects. The simulations show that accounting for the design
in these ways can reduce the bias. They also illustrate that
controlling for design features that are unrelated to the
survey variables can result in inefficient, but conservative,
inferences relative to those from models that do not
condition on such features, provided that the models include
the predictors required to make the missing at random
assumption (Rubin 1976) plausible. We demonstrate the
first approach to incorporating the design features by
imputing missing data from the National Health and
Nutrition Examination Survey using a sequential regression
approach.

1. Jerome P. Reiter and Satkartar K. Kinney, Institute of Statistics and Decision Sciences, Box 90251, Duke University, Durham, NC 27708, U.S.A.;
Trivellore E. Raghunathan, Department of Biostatistics and Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, U.S.A.



144 Reiter, Raghunathan and Kinney: The Importance of Modeling the Sampling Design in Multiple Imputation

2. Inferences from Multiply-Imputed Data Sets

To describe construction of and inferences from
multiply-imputed data sets, we use the notation of Rubin
(1987). For a finite population of size N, let 7, =1 if unitj
is selected in the original survey, and 7, =0 otherwise,
where j=1,2,...,N. Let I=({,,...,1,). Let n be the
size of the sample obtained using a complex design. To
simplify notation, assume only one variable in the survey is
subject to nonresponse. Let R; =1 if unit j responds to the
original survey, and R, =0 otherwise. Let R=
(R,,...,Ry).The notation can be extended to handle
multivariate item nonresponse, but such complication is not
necessary for our purposes.

Let Y be the N x p matrix of survey data for all units in
the population. Let Y, =(Y,,,,Y,;) be the nx p matrix
of survey data for units with 7, =1; ¥,  is the portion of
Y. thatis observed, and Y,  is the portion of ¥, thatis
missing due to nonresponse. Let Z be the N xd matrix of
design variables for all N units in the population, e.g., stra-
tum or cluster indicators or size measures. We assume that
such design information is known at least approximately,
for example from census records or the sampling frames.
Values for Y, ;. are usually constructed from draws from
some approximation to the Bayesian posterior predictive
distribution of (¥, |Z,Y,,,,/,R). These draws are
repeated independently /=1,...,M times to obtain M
completed data sets, D" =(Z,Y,,., Y\, I, R).

From these multiply-imputed data sets, some user of the
data seeks inferences about some estimand Q =Q(Z,7Y).
For example, O could be a population mean or a population
regression coefficient. In each imputed data set D', the
analyst estimates O with some estimator ¢ and the variance
of g with some estimator u. We assume that the analyst
specifies ¢ and u by acting as if each D) was in fact
collected data from a random sample of (Z,Y) based on
the original sampling design /, i.e., ¢ and u are complete-
data estimators.

For [=1,...,M, let q(” and u"” be respectively the
values of ¢ and u in data set D). Under assumptions
described in (Rubin 1987), the analyst can obtain valid
inferences for scalar QO by combining the ¢ ®

and u'’.
Specifically, the following quantities are needed for
inferences:

Q= f q" /M (1)
=1

by =2 (" =) /(M -1) )
=1

i, = f u /M. (3)

=1
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The analyst then can use g, to estimate O and
T, =(+-5)b, +i1,, to estimate the variance of g,,.
When n and M are large, inferences for scalar Q can be
based on normal distributions, so that a (1-a)%
confidence interval for Q is g, £z(a/ 2)\/@ . For
moderate M, inferences can be based on 7—distributions with
degrees of freedom v, =(M -1)(1+r,")*, where
r,=(+M b, /u,, so that a (1-a)% confidence
interval for Q is g,, £1¢,,,(ou/ 2)@ . Refinements of these
basic combining rules have been proposed by several
authors, including Li, Raghunathan and Rubin (1991a), Li,
Meng and Rubin (1991b), Raghunathan and Siscovick
(1996), and Barnard and Rubin (1999).

3. Ilustrative Simulations

In this section, we use simulations to illustrate the
biases/inefficiencies associated with incorporating design
features in imputation models. We simulate three target
populations of N =100,000 units that are stratified and
clustered within strata. In the first population, ¥ depends on
both stratum and cluster effects. In the second population, ¥
depends on strata but not on cluster effects. In the third
population, Y is unrelated to the stratum and cluster indi-
cators. The first population is used to demonstrate the
importance of including all relevant design variables, and
the second and third populations are used to examine the
effect of including irrelevant design variables. The
simulated populations are stylized to illustrate the
importance of modeling the survey design; hence, the
magnitudes of biases/inefficiencies may not be
generalizable to other settings.

Each population is divided into five equally-sized strata
comprised of N, =200 clusters, for 2=1,...,5. Each
cluster ¢ in stratum /4 is comprised of N, units. In each
stratum, ten clusters have N, =300, twenty clusters have
N, =200, sixty clusters have N, =100, sixty clusters
have N, =75, and fifty clusters have N, =50. Cluster
sizes are varied to magnify design effects when taking
multi-stage cluster samples. For each target population,
there are two survey variables, X and Y. In all three
populations, for simplicity we generate each X, ., where j
indexes a unit within stratum and cluster /4c, from
Xy ~ N(O, 10%). To generate Y, we use different methods
for each population, as shall be described in subsequent
sections.

We randomly sample units from each population using
multi-stage cluster sampling. First, we take a simple random
sample of n, =40 clusters from stratum 1, n, =20 clusters
from stratum 2, n, =30 clusters from stratum 3, n, =10
clusters from stratum 4, and n; =15 clusters from stratum
5. The cluster sample sizes differ across strata to magnify
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design effects relative to equal sampling. We then take a
simple random sample of twenty units from each sampled
cluster. Hence, there are 2,300 units with 7, , =1. B
The estimands of interest in each population are 0 =7,
the population mean of Y, and the coefficients for the
population regression of ¥ on X. The complete-data esti-
mator of ¥ is the usual, unbiased design-based estimator,

1 200 N
=100 Z 2|

~ 100,000 )

where y,.=N,_»,. is the estimated total in cluster /c. The
complete-data estimator of the variance of ¢ is,

5 2 ny 2
thl 200 (1 —2—00}5‘}, /nh

s 200 , 20 ) , '
> =3 N. {1——}% /20
h=1 nh h N

he

e L
100,000°

where s, is the sample variance of the ,. and s;, is the
sample variance of ¥ within cluster /c. The estimators of the
coefficients in the regression of Y on X are the usual
approximately unbiased, design-based estimators, which are
computed using the “survey” routines (Lumley 2004) in the
software package R. These routines estimate variances using
Taylor series linearizations. These estimators are used for all
multiply-imputed data sets in all simulations.

For each sample, we let X be fully observed, and let Y be
missing for about 30% of the sampled units.

Each unit’s binary response variable, R, , is drawn
from a Bernoulli distribution:
exp(—0.847-0.1X, .
Pr(Rhcj _ 1) p( hq) (4)

1+ exp(—0.847 0.1, )

Here, R, =1 means that the unit’s value of Y is missing.
Equation 4 implies that Y . is missing at random (Rubin
1976). We can ignore the missing data mechanism provided
that imputations for missing data are conditional on X. We
purposefully do not allow missingness to depend on stratum
or cluster membership to illustrate that bias can arise from
failing to account for the survey design even when the
ignorable missing data mechanism does not depend on the
sampling design. Of course, if the sampling design is related
to missingness, as it is in many real datasets, one must
condition on the sampling design to make the missing data
mechanism ignorable.

We examine three strategies to impute Y, that make
different use of the design information. These strategies are
summarized in Table 1. The first strategy, labeled SRS,
completely disregards the sampling design. The second
strategy, FX, incorporates the stratification and the
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clustering by using fixed effects for each cluster within
stratum. The third strategy, HM, uses normal random effects
models that incorporate the stratification and clustering. For
SRS, one model is fit to the entire data set. For FX and HM,
models are fit separately in each stratum. All three strategies
regress on X because it is part of the missing data
mechanism; not conditioning on X would violate ignorabi-
lity and cause bias.

Table 1
Imputation Strategies

Label  Imputation model for missing Y},
SRS N(By+BX}y.07)
EX NBoy + By X + @pes 03)

HM NBos + BurX et + @pes 53). @y ~ N(0, T)

All imputations are draws from the appropriate Bayesian
posterior predictive distributions. First, we draw parameters
of the imputation models from their posterior distributions
given the components of the observed data, (Z, X,
Y. I, R), that are included in the models. Second, we
draw values of the missing data from the distributions given
in Table 1. Diffuse priors are used for all parameters. For
strategy HM, we draw values of the parameters using a
Gibbs sampler (Gelfand and Smith 1990). We run the
sampler for a burn-in period to get approximate conver-
gence, then we use every tenth draw for imputations.
Finally, we use M =5 independently drawn imputations in
each data set for each strategy.

3.1 Simulation A: Illustration of Disregarding
Relevant Design Features

In this simulation, we generate a population in which the
distributions of Y differ across strata and clusters. We call
this “Population 1”. Specifically, for unit j in stratum 4 and

cluster ¢, we construct the population value of ¥ ; from

Yy =10X,,; + By, + .+ €, (5)
where f3,, is a scalar constant for stratum 4, the ©,. is a
scalar constant for cluster /c, and €, is a random error
term drawn from N(0,200%). The values of the stratum
effects are By, =500, By, =—250, By; =0, By, =250, and
Bos =—500. The values of the ®,. are obtained by drawing
five sets of N, =200 values from independent N(0, 70%).
The stratum and cluster effects are widely dispersed to
magnify design effects relative to simple random sampling,
which in turn magnifies the effects of disregarding the
design in imputations. We then sample from this population
using the stratified cluster sampling scheme outlined
previously. We create the missing data indicator R using
equation 4.
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Table 2 shows the results of 1,000 replications of the
three imputation strategies outlined in Table 1. The
additional row labeled “Complete data” shows the results
using the data for all sampled units, Z.e., assuming no units
with 7,; =1 have R, =0. The column labeled “95% CI
cov.” contains the percentage of the 1,000 simulated
confidence intervals that contain the population parameter.
The column labeled “Pt. Est.” contains the averages of the
1,000 point estimates of Q. The column labeled “Var”
contains the variances of the 1,000 point estimates of Q. The
column labeled “Est. Var” contains the averages across the
1,000 replications of the estimated variances of the point
estimates. The columns labeled “Var(Est.Var)” and
“MSE(Est.Var)” give the variance and mean squared error
of the 1,000 estimated variances.

Imputations based on method SRS lead to severely
biased estimates and very poor confidence interval coverage
in this population. These problems exist even though there
is not much missing information and despite the fact that we
use design-unbiased estimators for inferences. Both FX and
HM have point estimates that approximately match the
complete-data point estimates, and both have coverage rates
that approximately match the rates for the complete data
inferences. FX and HM have similar profiles because the
fixed effect models and the hierarchical models produce
similar estimates of the parameters in equation 5.

When estimating the population mean, the variance
associated with FX or HM is only slightly larger than the
variance associated with the complete-data estimator. This
is because of the large cluster effects, which makes the
within-imputation variance a dominant factor relative to the
between-imputation variance. That is, the fraction of
missing information due to missing data is relatively small
when compared to the effect of clustering.

3.2 Simulation B: Illustration of including irrelevant
predictors

Modeling the design features is essential when the
features are related to the survey variables of interest. How
does modeling irrelevant design features affect inferences?
In this section, we present the results of two simulation
studies that explore this question.

First, we generate “Population 2” in which the distribu-
tion of Y differs across strata but does not depend on the
clusters. To do so, we use the same generation method as in
Equation 5, setting the ,, equal to zero. The €, are
drawn from N(0,100°). We sample from Population 2 and
generate missing data using the schemes outlined
previously. The results for 1,000 replications are displayed
in Table 3.

SRS continues to have severe bias and poor confidence
interval coverage because it ignores the stratification. For
FX and HM, the averages of their point estimates are within
simulation error of the average of the point estimates for the
complete data. Additionally, their confidence interval
coverage rates approximately match the coverage rate for
the complete-data intervals. This indicates that FX and HM
are reasonable for these populations, even though the
irrelevant cluster features are included in their imputation
models.

We next generate “Population” 3 in which the distribu-
tion of Y is independent of the strata and cluster membership
indicators. Specifically, to generate Y, we subtract the B,
from the values of Y generated in Population 2. We then
sample from Population 3 using the stratified cluster
sampling scheme and create missing data using the methods
outlined previously. The results for 1,000 replications are
displayed in Table 4.

Table 2
Performance of Imputation Procedures when the Design Features are Related to the Survey Variable of Interest.
The Population Mean Equals 3.2 and the Population Regression Coefficients Equal 3.0 and 10.1

Method 95% Cl cov. Pt. Est. Var Est. Var ~ Var(Est. Var) MSE (Est. Var)
Complete data 9422 2.0 544.91 52731 31,626.19 31,936.07
SRS 38.0 45.8 327.79 360.74 11,927.97 13,013.35
Mean ¥ FX 94.8 24 554.09 579.92 37,474.82 38,141.70
HM 94.5 23 551.02 553.16 34,056.39 34,060.99
Complete data 93.0 24 529.51 499.73 18,543.13 19,430.21
SRS 39.5 46.8 340.09 365.50 9351.15 9,996.99
Intercept gy 94.5 2.8 539.19 551.68 21,529.16 21,685.33
HM 93.9 2.7 536.82 524.82 19,256.24 19,400.11
Complete data 933 10.1 1.24 1.15 0.14 0.15
Slope SRS 64.8 76 2.10 2.20 0.55 0.56
P FX 94.5 10.1 1.45 1.44 0.18 0.18
HM 95.7 10.1 1.53 1.65 0.29 0.30
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Table 3
Performance of Imputation Procedures when the Population has Stratum Effects but no Cluster Effects.
The Population Mean Equals 0.34 and the Population Regression Coefficients Equal 0.14 and 10.13

Method 95% Cl cov. Pt. Est. Var Est. Var ~ Var(Est. Var) MSE (Est. Var)
Complete data 93.6 0.37 468.97 461.88 29,301.77 29,352.04
Mean ¥ SRS 31.1 42.90 259.46 303.46 10,228.40 12,164.74
can FX 93.7 0.32 473.86 47421 30,408.95 30,409.07
HM 93.4 0.34 476.03 465.53 29,406.61 29,516.85
Complete data 93.0 0.72 451.46 432.74 14,955.20 15,305.73
SRS 315 43.10 275.22 311.36 8,134.04 9,440.57
Intercept FX 932 0.66 456.08 444.88 15,539.21 15,664.64
HM 923 0.68 457.48 436.25 14,941.00 15,391.75
Complete data 93.1 10.09 0.99 0.91 0.09 0.10
Slope SRS 59.0 7.72 1.67 1.77 0.35 0.36
P FX 93.4 10.10 1.03 0.98 0.10 0.10
HM 933 10.10 1.03 0.96 0.10 0.10

Table 4

Performance of Imputation Procedures when the Design Variables are Completely Unrelated to the Survey Variable of Interest.
The Population Mean Equals 0.34 and the Population Regression Coefficients Equal 0.14 and 10.04

Method 95% Cl cov. Pt. Est. Var Est. Var ~ Var(Est. Var) MSE (Est. Var)
Complete data 94.7 0.35 14.61 14.73 32.65 32.66
Mean ¥ SRS 95.7 0.12 16.45 19.22 40.65 4831
can FX 97.8 0.40 19.64 28.29 97.66 172.38
HM 95.1 0.26 18.77 19.16 47.29 47.44
Complete data 93.7 0.12 7.13 7.20 5.31 5.32
SRS 96.8 -0.10 8.97 11.72 13.59 21.10
Intercept FX 98.6 0.17 12.23 20.62 39.84 110.24
HM 96.2 0.03 10.45 11.61 15.09 16.45
Complete data 94.5 10.04 0.07 0.07 0.001 0.001
Slope SRS 96.4 10.07 0.10 0.13 0.002 0.003
P FX 96.4 10.04 0.12 0.15 0.003 0.004
HM 95.2 10.05 0.11 0.12 0.002 0.002

SRS finally produces point estimates whose averages are
within simulation error of the complete data average point
estimate. This is because the imputations in SRS reflect the
population structure reasonably well. This suggests that
disregarding the design in imputation models may provide
acceptable inferences when the design variables are only
weakly correlated with the survey outcomes. As in the
previous simulations, FX and HM continue to have average
point estimates within simulation error of the complete-data
average point estimate. When comparing the three impu-
tation strategies, we see that FX and HM are inefficient
relative to SRS. This is because the imputation models for
FX and HM estimate parameters that equal approximately
zero in the population, whereas SRS sets them equal to zero.
HM has smaller variance than FX does, because the
hierarchical imputation model smoothes the estimated
cluster effects towards zero.

For FX, the percentage of confidence intervals that cover
Q is larger than the percentages for the complete-data
intervals and HM intervals. This is because the estimated
variance for FX tends to be larger than its actual variance.

This apparent upward bias in 7, also exists for SRS,
resulting in a larger coverage percentage than those for the
complete-data and HM.

4. Real Data Example

We next examine the effect of accounting for stratifi-
cation and clustering when imputing missing data in a
genuine dataset. The data are taken from the public use file
for the 1999-2002 National Health and Nutrition
Examination Surveys. Individuals are grouped in 56 clusters
divided among 28 strata. Many variables have 5% to 10%
missing data.

We imputed missing data using two strategies: one
ignoring design variables (like SRS) and one incorporating
the design variables using fixed effects for cluster indicators
(like FX). In the imputation model, we included 27 dummy
variables to represent 28 strata and one dummy variable
within-each stratum to represent the two clusters nested
within each stratum. That is, a total of 55 dummy variables
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were included as predictors. We used a stepwise variable
selection procedure to identify statistically significant
interactions between these dummy variables and survey
variables, and we included these interactions as predictors in
the imputation model as well. The values were imputed
using the sequential regression approach implemented in the
software package IVEWARE (www.ist.umich.edu/src/smp/
ive). We generate M = 10 data sets for each strategy.

We consider three estimands. The first is the population
percentage of people who have ever had their blood
cholesterol level checked (BPQ060). This variable has about
15% missing values. The second and third are the popu-
lation regression coefficients in a logistic regression of
BPQO060 on family poverty income ratio (INDFMPIR), a
continuous variable that has about 12% missing values.
These estimands are estimated using design-based methods
computed with the “survey” routines in the software
package R.

Table 5 displays the results for both imputation
strategies. The two sets of estimates for all analyses are very
similar. In this case, incorporating the design variables into
the imputation model hardly impacts the results. This is due
in part to the small fractions of missing information and the
relative unimportance of stratum and cluster effects. How-
ever, there is minimal penalty for including the design
features in the imputation model. In light of the results of
the simulations in section 3, we would incorporate the
design features in this imputation model.

Table 5
Comparison of Real Data Results when Design Features
are Included in Imputation Model and when
Design Features are Ignored

Pt. Est. S.E. 95% CI

Mean BPQO60

design 0.319 0.010 (0.299, 0.339)

no design 0.319 0.011 (0.296, 0.341)
Intercept: Logistic Regression

design 0.362 0.054 (0.256, 0.467)

no design 0.352 0.052 (0.251, 0.454)
Slope: Logistic Regression

design —0.409 0.020  (-0.449,-0.369)

no design —0.407 0.019  (-0.444,-0.371)

5. Concluding Remarks

The simulation studies, though limited, suggest dis-
regarding the sampling design in multiple imputation can be
a risky practice. When the design variables are related to the
survey variables, as in our Simulation A, failing to include
the design variables can lead to severe bias. On the other
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hand, including irrelevant design variables, as in our
Simulation B and the NHANES example, leads at worst to
inefficient and conservative inferences when the imputation
models are otherwise properly specified.

Including dummy variables for cluster effects greatly
reduced the bias relative to disregarding the design
completely. However, blindly including dummy variables is
not an automatic solution. When the regression slopes or
variances differ across clusters, using FX or HM may result
in biased estimates, since important design features are
disregarded. Imputers suspecting such relationships should
include appropriate interactions with the dummy variables
for the design features, as we did in the NHANES example.
In some surveys the design may be so complicated that it is
impractical to include dummy variables for every cluster. In
these cases, imputers can simplify the model for the design
variables, for example collapsing cluster categories or
including proxy variables (e.g., cluster size) that are related
to the outcome of interest.

The simulations suggest that there can be payoffs to
using hierarchical models for imputation of missing data
relative to using fixed effects models, particularly when
cluster effects are similar. However, hierarchical models are
more difficult to fit than fixed effect models. For example, it
is daunting to fit hierarchical models in complex designs
when data are missing for several continuous and
categorical variables. It may be possible to fit sequential
hierarchical models in a spirit similar to the sequential
regression imputations of Raghunathan et a/. (2001). This is
an area for future research. A further disadvantage of
hierarchical models is that they are easier to mis-specify
than fixed effects models. For example, if the cluster effects
follow a non-normal distribution, the hierarchical normal
model used in this paper could provide implausible
imputations.

With multiple imputation, the key to success is
specifying an imputation model that reasonably describes
the conditional distribution of the missing values given the
observed values. Design features frequently are related to
survey variables, so that including them in the imputation
models reduces the risks of model mis-specification. We
believe that in many cases the potential biases resulting
from excluding important design variables, or other
variables related to the missing data mechanism, outweigh
the potential inefficiencies from estimating small coeffi-
cients. This reinforces the general advice provided by many
on multiple imputation: include all variables that are related
to the missing data in imputation models to make the
missing data mechanism ignorable (e.g., Meng 1994; Little
and Raghunathan 1997; Schafer 1997, and Collins, Schafer
and Kam 2001).
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Bernoulli Bootstrap for Stratified Multistage Sampling

Fumio Funaoka, Hiroshi Saigo, Randy R. Sitter and Tsutom Toida '

Abstract

In this article, we propose a Bernoulli-type bootstrap method that can easily handle multi-stage stratified designs where
sampling fractions are large, provided simple random sampling without replacement is used at each stage. The method
provides a set of replicate weights which yield consistent variance estimates for both smooth and non-smooth estimators.
The method’s strength is in its simplicity. It can easily be extended to any number of stages without much complication. The
main idea is to either keep or replace a sampling unit at each stage with preassigned probabilities, to construct the bootstrap
sample. A limited simulation study is presented to evaluate performance and, as an illustration, we apply the method to the

1997 Japanese National Survey of Prices.

Key Words: Complex survey; Linearization; Quantiles; Resampling; Stratification.

1. Introduction

Many large scale surveys are conducted using a stratified
multi-stage sampling design. Variance estimation in this
type of design can be analytically involved or even
impossible. In addition, for publicly released data sets the
specific forms of estimators the end-user may wish to obtain
variance estimates for are unknown. As a result, resampling
methods are often carried out to obtain a set of replicate
weights that can be supplied with the data set and used for
the purpose of variance estimation for a broad class of
possible estimators. The bootstrap is particularly useful
since it can handle both smooth and nonsmooth sample
statistics under multistage designs. A concise summary of
several bootstrap methods for finite population sampling is
found in Shao and Tu (1995, pages 232-282) (see also,
Gross 1980; Bickel and Freedman 1984; McCarthy and
Snowden 1985; Rao and Wu 1988; Kovar, Rao and Wu
1988; Sitter 1992a, b; Booth, Butler and Hall 1994; Shao
and Sitter 1996).

If the first-stage sampling fraction is small, there are
various bootstrap methods available that treat the first-stage
sampling as having been with-replacement for the purposes
of variance estimation. In the case where the first-stage
sampling fraction is not negligible, there are fewer results
available. For bootstrapping in two-stage sampling with
simple random sampling (SRS) at each stage see Sitter
(1992a, 1992b) and with unequal probabilities Rao and Wu
(1988). However, if the first-stage sampling fractions are not
negligible no simple bootstrap procedure is available for
three or more stages of sampling. In this paper, we propose
a new bootstrap method which easily accommodates such
cases when the sampling is simple random sampling (SRS)

at each stage. We call it a Bernoulli bootstrap (BBE)
because of its resemblance to Bernoulli sampling. The
National Survey of Prices (NSP) in Japan is used for
illustration.

The paper is organized as follows. Section 2 introduces
notation for three-stage stratified sampling. Section 3
describes two types of BBE. Section 4 investigates
properties of the methods via simulation. Section 5
describes the sampling design of the 1997 NSP and
illustrates the use of BBE on the NSP data. Concluding
remarks are made in section 6.

2. Stratified Three-Stage Sampling

In stratified random sampling, the finite population,
consisting of N primary sampling units (PSU’s), is
partitioned into H nonoverlapping strata of N;, N,,..., N
PSU’s, respectively; thus, ¥/, N, = N. A simple random
sample without replacement (SRSWOR) of PSU’s is taken
independently from each stratum. The sample sizes within
each stratum are denoted by n,,n,,...,n,, and the total
PSU sample size is n=Y} n,. At the second stage, a
sample of m,, secondary sampling units (SSU’s) are
selected from PSU i of size M,, within stratum % by
SRSWOR. At the third stage, a sample of /,; ultimate
sampling units (USU’s) are selected from SSU ij of size
L,; within stratum 4 by SRSWOR. A vector of
measurements of some unit characteristics is represented as
Yaiie = Vinge> Yanie yrh,.jk)f, where the subscripts Aijk
refer to the stratum label, PSU label, SSU label and USU
label, respectively. The population parameter of interest
0 =0(S), where S={Yuu:h=L2,....H;i=12,...,N,;

1. F. Funaoka, Professor, Faculty of Economics, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan; H. Saigo, Professor, School of
Political Science and Economics, Waseda University, 1-6-1 Nishiwaseda Shinjuku, Tokyo, 169-8050, Japan; R.R. Sitter, Professor, Department of
Statistics and Actuarial Science, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada; T. Toida, Associate Professor, Faculty of Social and
Information Studies, Gunma University, 2-4 Aramakicho, Maebashi, Gunma 371-8510, Japan.
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Jj=L.. M;k=1,..,L,}, is usualy estimated by
0 =0(s), where S—{Ym,k h=12,....,H;i=1,2,...,n,;
J=bL...,m;k=1,..,1,}. The populatron total vector is
denoted Y =(Y, )T In this case, its unbiased estimate

is
H H n,
Y=>Y,= hz (N, /1,)> Y,
h=1 =1 i=1
where Yy =M, /m ) Y and Yo =Ly, /1)
Zk 1 Y nijic - This may be written as Y—Zh,-jk Wiii ¥ nijic
where Wiy = (N, I )M,y )Ly /D).
For t=1, an unbiased estimate of Var(Y ) is v(Y )=
>4 v(Yh ), where

N;(l_frh)si n

V(};h): &ni M;i(l_fzhi)szi
m izt my,

i < z Lh,, (= fay )Shy

Wy = My j=1 L
with Y, =n,'%Y,,Y, = m;,lz Vi Vhig. = lh_yl'Azk V>
Jin=m/ Ny, fo = mhi/ﬂ{hwfam/ lhu/Lhw Si =% (Y _Yh-)z/
(n, =1), Sii =%, (&, - Yhi-)2 (my,, = 1), and S;ij =2
(Vpie = Vig.)* /(; =1) (Sérndal, Swensson and Wretman

1992, pages 148-149).

3. Proposed Bernoulli Bootstrap

To handle the multi-stage aspect of the sampling within
stratum, we propose a multi-stage bootstrap. To simplify
ideas, we first introduce a simple version that has some
limitations in applicability. We will then subsequently
describe a more general form that avoids these difficulties.

A Short Cut BBE

Step L. For each sample PSU, ki, within stratum
h,h=1,..., H, we: (a) keep it in the bootstrap
sample with probability

A=1).
= [1- 3.1
Py, (1 I’l;l) ( )
or (b) replace it with one selected randomly
from the n, PSU’s. If (a) is the case, go to Step
1L

For each SSU 4ij in PSU Ai of stratum 4 kept
at Step I, we: (c) keep it in a bootstrap sample
with probability

Step 1L

0= Fa), 52

p =
p, (=m))’
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or (d) replace it with one selected randomly
from the m,; SSU’s in PSU #i of stratum 4. If
(c) is the case, go to Step IIL

For each USU #Aijk in SSU hij in PSU hi of
stratum 4, we: (e) keep it in the bootstrap
sample with probability

Vi :\/1—

or (f) replace it with one randomly selected from
the [, USU’s in SSU hij in PSU hi of

hij
stratum /.

Step II1.

&M(l_ﬁh[j).

T -—;  (33)
phl thl (1_1;”',1')

If we let K, »; denote the number of times unit hijk
appears in the bootstrap resample then the bootstrap
estimate of the total is Y' = ik wh,jyhuk, where wh,
K, i Whirs and the bootstrap estimate of V(8) is Va (6) =
V(G ), where 6" = =0(Y") and V, represents the variance
under the resampling procedure. Typically, the bootstrap
estimate of variance is obtained by Monte Carlo simulation.
That is, repeat Steps I-11I a large number of times, B, to get
6 .. 6 and use

B
vy(0) = z (6,-90,,)/B,

where 6() 2 6" /B. In most cases one can replace 6()
by 6. This allows the survey methodologist to create a set
of replicate weights wh,.j for each bootstrap resample and
release these with the data released to the public.

Obviously, the short cut BBE is feasible only when
D> Dyi» rhy e [0,1]V h,i, j. For instance, it is necessary
that f,, >n, . To handle arbitrary n,, m,,, l,; > 2, we may
modify each step and change p,, q,,, 1;; accordingly:

A General BBE

Step I''  Choose (n,—1) PSU’s by SRS with
replacement from 7, PSU’s in the sample,
h=1,...,H. Denote the candidate set by
{PSU, .:i=1,2,...,n, —1}. For each PSU i in
the sample in stratum 4, we: (a) keep it in the
bootstrap sample with probability

A=),
2 (1-n"y G4

Pn=

or (b) replace it with one selected randomly
from {PSU,;:i=L12,...,n, —1}. If (a) is the
case, go to Step 1II'.

Step II'.  For hi keptat Step I', choose (m,; —1) SSU’s
by SRS with replacement from m,, SSU’s in
PSU hi. Denote the candidate set by

(SSU,.: j=1, 2,...,m, —1}. For each SSU

hif
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hij in PSU hi kept at Step 1', we: (c) keep it
in the bootstrap sample with probability

1_1&(1_f‘2hi).
2 p,t A-m,})

or (d) replace it with one selected randomly
from {SSU,.: j=1,2,...,m,, —1}. If (c) is the

hij *
case, go to Step IIT'".

G = (33)

Step III'. For hij keptat Step II', choose /,,;, —1 USU’s

by SRS with replacement from /,; USU’s in

SSU 4ij in PSU hi. Denote the candidate set

by {USU,;:k=12,..,1,—1}. For each

USU hijk in SSU hij in PSU ki, we: (e) keep

in the bootstrap sample with probability
L fu Son (1_f3hij).

i (=l

(3.6)
2p 9

or (f) replace it with one randomly selected
from {USU,;:k=1,2,.... 1, —1}.
Itis readily seen that p,, q,,,7,; €[0,1]1V n,, m;, [, = 2.

The reason for randomly selecting a candidate set in the
general BBE can be explained as follows. To fix the idea,
consider single-stratum one-stage SRSWOR. Let 7 be a
bootstrap sample mean under the short cut BBE with some
arbitrary p €[0,1]. Then, it can be shown that V,(¥ )=
n'(1-n")s*(1-p*), where s’ =3, (y, —y) /(n-1).
Note that ¥,(7") is monotone decreasing with respect to p
in [0,1]. So, min,,;, Va(¥ ) =0 and max V(¥ ) =
n'(1-n")s? If f<n”', then max , V.(7) < v(p).
The key idea of the general BBE is that we can make
max , V.(3") greater than v(¥) by putting extra variation
into unit replacement through randomly selecting a
candidate set.

It can be shown that both the short cut BBE and the
general BBE provide consistent variance estimation for
smooth functions of estimated population totals. Moreover,
under appropriate regularity conditions for the population
distribution function, they also provide consistent variance
estimation for sample quantiles. In addition, both BBE
methods use resample sizes equal to the original sample
sizes. This can be a desirable property when we deal with
imputed survey data (see Saigo, Shao and Sitter 2001).

It is not difficult to extend the BBE approach to designs
with more than three stages. For example, for a four stage
stratified design, a USU at the fourth stage within stratum 4
is kept with probability

U= 2 i Fonatiad Fong (=23 ) " (1= F)
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or replaced in the short cut BBE, where g, is the fourth
stage sample size and f,,;, is the fourth stage sampling
fraction. Further extensions are analogous.

The general BBE randomizes a candidate set in order to
merely fix infeasibility of the short cut BBE. This idea has
similarities to the approximately Bayesian bootstrap of
Rubin and Schenker (1986).

A disadvantage of the general BBE versus the short cut
BBE is that the former requires, on the average,
iy, =D+ p, 2 (my, =D+ p, 2 9,2, (1,; =)} more
random number generations than the latter, where p,,q,;,
and 7, are given by (3.4), (3.5), and (3.6), respectively.
This may be time-consuming when the sample sizes and/or
the number of strata are large. To reduce random number
generations in the general BBE, one can create a candidate
set by randomly deleting one unit from the original sample
and use

Py =, +1/2)=J(n, +1/2)* =, (1+ f;,),

(3.7)

G = (my+1/2) =JOm,; + 112 = £, 'my, (14 f3,) (3.8)

ry= (y+1/2)

- - (3.9
iy 112 = fa03 Foa@i i O+ Fong)

instead. It can be shown that p,, g, 7;; €[0,1]. The proof
for this modified version of the general BBE is similar.

4. A Simulation Study

In this section, we perform limited simulations to
examine the BBE for ratio estimation and quantile esti-
mation. For simplicity, we consider two-stage SRSWOR
and restrict to a single stratum.

4.1 General Description of Simulation

A single-stratum finite population is generated by the
following procedure and fixed over all simulation runs to
observe design-based properties of the BBE. First, the
average of the auxiliary variables in cluster i is generated by
w, ~N(u,c°) for i=1,2,...,N. Then, the auxiliary
variable x, of unit k in cluster i is generated by

X =W+, (k=L2,...,M;;i=1,2,...,N), (4.1)

where ¢, ~ N(0,(1-p)c”/p). The target variable y, of
unit & in cluster 7 is obtained by

Ve =a+bx, +e,(k=1,2,....M;;i=1,2,...,N), (42)

where e, ~ N(0,6°/4). The parameter values used are
p=100,0=10,p=0.10.3),a =0, and b=1, and two-
stage SRSWOR is used throughout the simulation study.

Statistics Canada, Catalogue No. 12-001
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4.2 Ratio Estimation

Let N=50,n=15,M,=20 and m, =3, for i =1,...,n

Consider the ratio estimator of the population total, ¥,
Y, =RX,

where X =Y 1Zk \ X, 1s the populatlon total of the X’s
R= Y/X Y= Zh 1Y Zh 1 (N, /nh)zl 1 h,aX thl N
b (N, /nh)zt thi’ i =M my )2 Yy, and Xhi:
(M, /m, )0 X,

For the purpose of comparison, we consider a number of
alternate variance estimators that are available in this simple
context:

1) The conventional variance estimator is denoted
1—f1 Z,- (2 _RX,')Z

n n—1
+EZ Miz (- le')sj’zi

1

vo(Yp)=N?
4.3)

where f, =n/N, f,, =m;/M, and
Sia = 2, y—Rx,) f(m, =),

2) The delete 1 PSU at a time jackknife corrected for the
first-stage sampling fraction is sometimes used, even
though it is not entirely correct,

0= 0= 2 Gy Ty 49

where YR(,) is the estimator recalculated with the "
PSU removed and YR() > YR(,) /n.

3) An externally weighted jackknife (see Folsom, Bayless
and Shah 1971) can be derived that corrects for both
stages of sampling as

N n—1 A N
Vew; Yo =01- ﬁ)TZ (YR(i) - YR(-))2

m; —1 A A
+ flz (1 _le)TZ (YR(U')_YR(-~) )2’ (4'5)
where YR(,) is the i"™ jackknife pseudo value by deleting
PSU |, YR(U) is the ij™ Jackkmfe pseudo value by
deletmg unit j in PSU i, YR() > YR(,)/n and
Yeey =Z; Tagy I my.

4) A model-assisted variance estimator is also available
(see Sdrndal, Swensson and Wretman (1992), equation
(8.10.6)),

(Fp) = (X X) v (Fp)- (4.6)

ma

We use B=100 bootstrap resamples in each of
§=1,000 simulation runs. The true MSE’s are
approximated by 10,000 simulation runs and we use Monte
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Carlo estimates of percent relative bias and coefficient of
variation of the various variance estimators as measures of
their relative performance, as well as, empirical coverage
probabilities of 90% confidence intervals.

We see in Table 1 that vggg, vy, v,,; and v,, perform
comparably and well, except that the CV of the resampling
methods are a bit higher than the non-resampling methods,
as is typical. The delete 1 PSU at a time jackknife performs
poorly.

To investigate the conditional properties, we ordered the
1,000 simulation runs on X /X and divided the runs into
20 equally sized groups. For each group the average of each
variance estimator is calculated. Figure 1 plots these
grouped averages for each variance estimator (excluding v,
since it has large negative bias) versus the grouped average
X /X, for p=0.3. The true MSE is included in the plot, as
well. This is a similar plot to that used by Royall and
Cumberland (1981a, 1981b). One can see that vyg; tracks
the true MSE much like v, and v, , whereas v, does

ewj ma?

not. Thus, the BBE seems to have a desirable conditional
property.

Table 1
Comparison of Variance Estimators for Y,

p % Bias CV  Coverage (90%)

0.1 v, -1.70 0.28 89.2
VBRE -0.62 0.33 88.9
Vewj -0.33 0.30 89.4
Vyj -26.55 0.39 80.5
Voa -0.39 0.30 89.4

03 Yo -0.67 0.28 86.6
VBRE -1.63 0.33 86.5
Vewj -0.74 0.29 86.5
Vyj -26.85 0.39 80.2
v -0.87 0.29 86.4

ma

MSEc, Ec

A0A92 0.94 0.96 OA‘I)S l 1.02 1.04 1.06 1.08

Figure 1. MSEc and Ec(v) for the ratio estimation.
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4.3 Quantile Estimation

For quantile estimation, we set N =100, n =30,
M, =100 and m, =10, for i=1,...,n. We use B =500
bootstrap resamples in each of S =5,000 simulation runs.
The true MSE’s are approximated by 50,000 simulation
runs. Only the results for vgp, and v,,; when p=0.1 are
summarized in Table 2 because those when p=0.3 are
similar. We see that the BBE method performs quite well,
with a slight upward bias, while the externally weighted
jackknife method has serious bias because of its in-
consistency in variance estimation for quantiles.

Table 2
Performance of vgpp and v, for the 0.10, 0.25, 0.50, 0.75
and 0.90 quantiles
VBBE Vew;

Quantile %Bias CV Coverage (90%) %Bias CV  Coverage (90%)
0.10 840 0.1 877 5187 193 813
025 6.21 042 88.2 21.19 1.28 833
0.50 253 037 874 14.27 1.00 83.0
075 623 042 87.8 28.07 1.33 834
090 632 050 88.0 5447 205 80.3

5. Application to the 1997 National Survey
of Prices in Japan

The objective of the NSP is to analyze price formations
of major consumers’ goods, such as food, clothes and home
appliances. To this end, quantile estimation plays a central
role, and many quantile estimates based on several post-
stratifications are included in the NSP reports.

The stratified multistage sampling used in NSP 1997 is
summarized as follows:

Stratification. Municipalities form the PSU’s and are
stratified into 537 strata, first according to prefectures and
economic sphere that each municipality forms and then
further by their population sizes.

First Stage Sampling. These PSU’s are selected via
SRSWOR independently within each stratum. An overview
of the first-stage sampling fractions is given in Table 3.

Second Stage Sampling. In a selected municipality, all the
large scale outlets are enumerated. In other words, single
stage cluster sampling is employed for large scale outlets.
For small scale outlets, on the other hand, a sampled
municipality is divided into survey areas (SSU’s) each
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consisting of about 100 outlets. Systematic sampling is used
to sample survey areas. The sampling fractions at the second
stage are between 0.1 and 1.0.

Third Stage Sampling. In each selected survey area, 40
outlets (USU’s) are chosen by ordered systematic sampling
with respect to the types of outlets and the annual sales
reported in the 1994 Census of Commerce.

Strictly speaking, there is no valid variance formula for
the NSP data because it contains systematic sampling. For
estimating variance, however, it is assumed that systematic
sampling can be approximated by SRSWOR. Even under
this simplified condition, there is no closed variance formula
for sample quantiles. In fact, no variance estimates are
associated with estimated price quantiles in the NSP report,
while the average prices are reported with their variance
estimates.

In this section, we apply the short cut BBE to the NSP
data, assuming that systematic sampling can be approxi-
mated by SRSWOR. Some strata have only one PSU. In
addition, f;, <n,' in some strata. Such strata are grouped
into adjacent strata so that p, given by (3.1) is in [0, 1].
After grouping, there are more than 280 strata. The effect of
reforming strata is assumed to be negligible.

Table 3
The First Stage Sampling Fractions in NSP 1997
Area Category Population #0of PSU’s  Sampling Sample
Size Fraction Size
Cities >100,000 221 1/1 221
Cities 50,000 —99,999 220 2/3 179
Cities <50,000 224 1/3 80
Towns and villages >40,000 32 1/5 4
Towns and villages <40,000 2,536 1/15 187

After reforming strata, the short cut BBE is employed in
those strata composed by cities. On the other hand, the with-
replacement bootstrap (Shao and Tu 1995, page 247) using
resample size (n, —1) is used in those composed of towns
and villages, where the first stage sampling fractions are
small. The quantile estimates and their standard errors for
selected commodities in small-sized outlets are shown in
Table 4. Note that the prices of a given commodity are
discrete. However, we apply the bootstrap as if prices of
commodities are continuous. This approximation should be
acceptable for many commodities, but not for very
inexpensive ones, since in such a case, a large percentage of
observations concentrate on a specific price and the
estimated standard error can be 0.

Statistics Canada, Catalogue No. 12-001



156 Funaoka, Saigo, Sitter and Toida: Bernoulli Bootstrap for Stratified Multistage Sampling

Table 4
Sample Quantiles (Standard Errors) of Selected Commodities for Small Outlets in NSP
Commodity p 0.10 0.25 0.5 0.75 0.90
Rice (5kg)* Sample quantile 239.4 255.2 278.3 299.1 315.0
(10 yens) (standard error) (0.24) (0.53) (0.21) (0.02) (0.61)
Instant Coffee (1 bottle)® Sample quantile 714 788 859 893 914
(yen) (standard error) (0.13) (0.40) (0.00) (2.68) (1.43)
Beer (24 cans)’ Sample quantile 467.3 500.0 536.8 549.4 549.4
(10 yens) (standard error) (1.01) (0.64) (0.82) (0.00) (0.00)
pC* Sample quantile 248.8 260.4 299.3 346.5 3759
(1,000 yens) (standard error) (2.03) (0.35) (3.25) (7.17) (1.48)

The specified brands *Koshihikari; "Nescafe Gold Blend, 100g; “Sapporo (Nama) Black Label, 350ml;

INEC PC9821 NW133/D14.

6. Conclusions

The bootstrap is useful for estimating variances in
complex surveys, particularly when quantile estimation is
important. We have proposed two Bernoulli-type bootstrap
methods that can easily handle multi-stage stratified
SRSWOR designs where sampling fractions are large: the
short cut BBE and the general BBE. In both methods, a
sampling unit at a given stage is either kept or replaced with
preassigned probabilities to construct a bootstrap sample.
The general BBE has an advantage in that it can handle any
combination of sample sizes > 2 although it requires more
random number generations than the short cut BBE. As an
illustration, we applied the short cut BBE to Japanese 1997
National Survey of Prices data.
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Geometric Versus Optimization Approach to Stratification:
A Comparison of Efficiency

Marcin Kozak and Med Ram Verma !

Abstract

In this paper, the geometric, optimization-based, and Lavallée and Hidiroglou (LH) approaches to stratification are
compared. The geometric stratification method is an approximation, whereas the other two approaches, which employ
numerical methods to perform stratification, may be seen as optimal stratification methods. The algorithm of the geometric
stratification is very simple compared to the two other approaches, but it does not take into account the construction of a
take-all stratum, which is usually constructed when a positively skewed population is stratified. In the optimization-based
stratification, one may consider any form of optimization function and its constraints. In a comparative numerical study
based on five positively skewed artificial populations, the optimization approach was more efficient in each of the cases
studied compared to the geometric stratification. In addition, the geometric and optimization approaches are compared with
the LH algorithm. In this comparison, the geometric stratification approach was found to be less efficient than the LH
algorithm, whereas efficiency of the optimization approach was similar to the efficiency of the LH algorithm. Nevertheless,
strata boundaries evaluated via the geometric stratification may be seen as efficient starting points for the optimization
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approach.

Key Words: Optimum stratification;

algorithm.

1. Introduction

Gunning and Horgan (2004) proposed a stratification
algorithm based on a geometric progression. For the sake of
simplicity, we will call this technique the “geometric
approach to stratification,” “geometric stratification,” or just
“geometric approach.” The geometric stratification aims to
equalize values of the coefficient of wvariation of a
stratification variable within strata, based on the assumption
that the variable is uniformly distributed within each
stratum. Gunning and Horgan (2004) showed that their
algorithm is much easier to implement and more efficient
than the classical cumulative root frequency method
(Dalenius and Hodges 1959) as well as the Lavallée and
Hidiroglou (LH) algorithm (Lavallée and Hidiroglou 1988).
Horgan (2006) compared the geometric stratification with
the Dalenius and Hodges’ (1959), Ekman’s (1959), and
Lavallée and Hidiroglou (1988) procedures; again, in their
study the geometric stratification occurred to be the most
efficient among the procedures compared. Gunning, Horgan
and Yancey (2004) applied this method to stratify
accounting populations.

Like the cumulative square root frequency method, the
geometric approach is an approximate stratification
technique, and hence the stratification points it provides
may be quite far from optimum stratification points. On the
other hand, there exist approaches, especially for univariate
stratification, that lead to near-optimum stratification points.

1. Marcin Kozak, Department of Biometry, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland.

Geometric  Stratification;

Numerical Optimization; Lavallée-Hidiroglou

These approaches are based on the use of self-implemented
algorithms or numerical optimization methods to provide
strata boundaries (e.g., Lavallée and Hidiroglou 1988;
Lednicki and Wieczorkowski 2003; Kozak 2004). Such
methods, however, usually require initial strata boundaries
to start an optimization process; approximate stratification
methods can be employed to find such initial points. Of
course, initial strata boundaries should be of high quality, as
their low quality may cause the optimization to provide a
local minimum (Rivest 2002).

Many surveys deal with positively skewed study
variables. If this is the case, it is important to take into
account this attribute when stratifying a population. Many
researchers have attempted to create stratification methods
that would construct a so-called “take-all” stratum (e.g.,
Glasser 1962; Hidiroglou 1986), from which all the
elements are selected in the sample with probability 1. In
stratified sampling, this is the best manner of dealing with
positively skewed variables. Such methods are usually more
efficient (certainly, only if a population is positively
skewed) than stratification methods in which a take-all
stratum is not constructed. A take-all stratum is not
constructed in the geometric stratification (Gunning and
Horgan 2004).

The aim of this paper is to compare the efficiency of the
geometric stratification, proposed by Gunning and Horgan
(2004), and two optimization approaches to stratification
(Lavallée and Hidiroglou 1988; Lednicki and
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Wieczorkowski 2003; Kozak 2004), which is based on the
use of numerical optimization methods.

2. Stratification Approaches Compared

Suppose we aim to stratify an N-element positively
skewed population, U, based on an N-vector Xx=
(x5 ees xN)T of values, known at the outset (i.e., prior to
the study), of a stratification variable X.

In this paper, we consider two stratification problems. In
the first problem, L strata are to be constructed subject to a
given sample size n. Suppose we are looking for an (L +1)
—vector of strata boundaries k = (k,,...,k,)" (k, <k <
...<k,, k, being the minimum and &, the maximum value
of X) that minimizes the variance of an estimator of the
population mean of X under stratified sampling with simple
random sampling without replacement within strata (S7.S1)
sampling combined with a take-all stratum approach. (Note
that we treat the stratification variable as identical to the
corresponding survey variable.) The variance of X, is given

by

where n, is the sample size from the 4™ stratum, N, is the
size of the 4™ stratum, S is the population variance of X
restricted to the A" stratum, X, is the estimator of the
population mean of X under S7S/ sampling, X, is the
estimator of the population mean of X in the 4™ stratum
under simple random sampling without replacement (S7)
sampling, and x,, is the value of X for the k™ sample
element of the 4™ stratumand A =1,..., L.

The optimum sample allocation, which is in our problem
obtained by minimizing the variance (1) subject to a given
sample size n, is given by the following Neyman-optimum
formula adjusted to a take-all stratum approach (Lednicki
and Wieczorkowski 2003):

NSy

-1 >
h=1 NhSh

n,=mn—-N;) h=1..,L-1. 2)

The geometric approach to stratification aims to equalize
values of the coefficient of variation of X within the L strata.
It simply consists of applying the following formula based
on a geometric progression (Gunning and Horgan 2004)

k,=ar",h=0,...,L, 3)
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where a=min(X), k, =max(X), and r=(k /kO)I/L.
The formula (3) is based on the assumption that X is
uniformly distributed within each stratum.

The optimization approach applied to this particular
stratification problem is based on the numerical optimiza-
tion of the following problem: Minimize

JK) =V (xy), 4)

where V(x,) is the variance (1) under the optimum
allocation (2), subject to constraints

N,z22and2<n,<N,forh=1,...,L -1, )

and

~

-1
n,=n-N,. ©6)

1

>
Il

Sometimes, when one wants to obtain more or less equal
levels of precision of estimation in each stratum, a power
allocation may be applied (Bankier 1988; Rivest 2002;
Lednicki and Wieczorkowski 2003):

_(n=N)\V,5)"

L-1 —
h=1 (thh )P

., ,pe(0,1];h=1,...,L—1. (7

The optimization approach is more difficult to apply than
the geometric stratification approach due in large part to the
fact that the algorithm for the geometric approach is signi-
ficantly more simplistic than for the optimization approach.
An optimization method has to be chosen from among
various available methods. Lednicki and Wieczorkowski
(2003) used the simplex method of Nelder and Mead
(1965); however, more efficient methods, which often
require self-implemented algorithms (e.g., Kozak 2004), can
be applied, too.

Note that the geometric stratification does not take into
account the formulae for the variance (1), the sample
allocation (2), and the constraints (5). It may happen that
one of the constraints (5) is not fulfilled. For these reasons,
the geometric stratification is an approximate stratification
procedure.

In this study, the algorithm proposed by Kozak (2004)
was applied to stratify several populations. It is a random
search algorithm adjusted to the problem of stratification. It
is a simple algorithm; in each step, a stratum boundary is
randomly selected and randomly changed. If the new set of
strata boundaries is better than the previous one, the new
one replaces the previous one. In the Appendix, the
algorithm based on the paper by Kozak (2004) is given in
detail.
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The second problem considered in the paper is
construction of strata that minimize a sample size from a
population with respect to a given level of precision of
estimation (the precision of estimation being given by the
variance of an estimator of the population mean or total).
The Lavallée-Hidiroglou (LH) algorithm (Lavallée and
Hidiroglou 1988) can be seen as a particular optimization
method to solve this particular stratification problem; it does
not, however, work in other problems, e.g., in the one
considered earlier. For details of the algorithm, see the paper
by Lavallée and Hidiroglou (1988). Besides the LH
algorithm, the geometric stratification and random search
method were applied to construct the strata.

The R language and environment (R Development Core
Team 2005) was used to perform all the computation work
in the present study.

3. Numerical Comparison of Efficiency of the
Approaches in Stratification Under
Fixed Sample Size

In this section, we compare two stratification approaches,
the geometric stratification (geom) and optimization
approach (optim), applied to a problem of searching for the
strata boundaries that minimize the variance of the
considered estimator with respect to a fixed sample size. In
order to perform the comparison, five artificial populations
of various sizes (from 2,000 to 10,000) were generated.
Their summary statistics are presented in Table 1; the
histograms of the stratification variables in the populations
are given in Figure 1. In each case, the stratification variable
was positively skewed (the skewness ranged between 1.40
for the 1* population to 5.02 for the 5t population). As it is
usually the case in real populations, values of the
stratification variables were integers. The sample size, #,,
from the i"™ population was n, = f N,, where f =0.15 is
an assumed sample fraction and N, is the size of the i"
population.

Table 1
Summary Statistics for Studied Artificial Populations

Population  Size Range Skewness Mean Variance
1 4,000 3-72 1.40 16.11 45.8
2 4,000 243-28,578 2.66 2,823.95 4.8 x 10°
3 2,000 6-2,793 3.55  224.12 6.0 x 10
4 10,000 62-74,398 420 3,616.41 2.1 x 10’
5 2,000 259-186,685  5.02 9,265.36 1.1x 10°

First, each population was stratified using the geometric
stratification method into 4, 5, 6, and 7 strata. Then, the
optimization approach was applied; as initial parameters in
the optimization approach, the strata boundaries determined
via the geometric stratification were used.
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Like Gunning and Horgan (2004), to compare the
efficiency of the two approaches, the relative efficiency was
calculated via the formula:

ff _ Vgeom (fst )
¢ geom, optim v — N\
optim (xst )

®)

where V.., (%) and V.. (%) are the variances (1) under
the geometric and optimization approach, respectively. In
addition, we calculated the coefficients of variation of the

estimator of the population mean under both approaches:

geom — s Voptim - —

st xst

Table 2 contains the values of the relative efficiencies (8)

and the coefficients of variation (9) for each combination
studied (population x number of strata).

Table 2
Coefficients of Variation of the Estimator of the Population Mean
Under the Geometric Stratification (CV gom) and Optimization
Approach (CV,pim), and Efficiencies of the Geometric
Stratification Relative to the Optimization
ApproaCh (effgeom,optim)

Number of stratal ~ CVyeo, CVptim effyeom,optim
Population 1
4 0.0086 0.0056 1.53
5 0.0070 0.0042 1.66
6 0.0057 0.0034 1.66
7 0.0051 0.0029 1.75
Population 2
4 0.0116 0.0084 1.37
5 0.0095 0.0065 1.47
6 0.0085 0.0051 1.66
7 0.0073 0.0042 1.72
Population 3
4 0.0235 0.0133 1.76
5 0.0174 0.0100 1.74
6 0.0146 0.0081 1.80
7 0.0129 0.0067 1.91
Population 4
4 0.0104 0.0063 1.64
5 0.0089 0.0047 1.88
6 0.0073 0.0038 1.93
7 0.0064 0.0032 2.00
Population 5
4 0.0235 0.0134 1.76
5 0.0185 0.0100 1.86
6 0.0161 0.0080 2.00
7 0.0134 0.0074 1.82

In each case, the optimization approach was more
efficient than the geometric stratification. The efficiency
was smaller than 1.5 for only two combinations; in the rest
of combinations, it ranged between 1.5 and 2. Usually, the
more strata constructed the greater the gain in efficiency.
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Figure 1. Histograms of stratification variable in studied artificial populations.

4. Numerical Comparison of Efficiency
of the Stratification Approaches Under
Fixed Level of Precision of Estimation

Gunning and Horgan (2004) and Horgan (2006) com-
pared the geometric stratification with the Lavallée and
Hidiroglou (Lavallée and Hidiroglou 1988) algorithm and
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found that the former was usually more efficient. In this
section, we compare the three stratification approaches: the
geometric stratification, the LH algorithm, and the optimiza-
tion approach via a random search method. In this study, the
same five populations as in the previous section were used
(see Table 1 and Figure 1).
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The relative efficiencies of two approaches were
evaluated as
_n (cv) (10)

n;(cv) ’

ij

where 7 and j are the indices of the stratification approaches
(i, j = geom, optim, LH), and n,(cv) and n,(cv) are the
minimum sample sizes required to obtain a desired level of
precision (cv) under the ™ and ;™ approaches,
respectively.

Using the three approaches, each population was
stratified into L =4,...,7 strata; the required level of
precision was 0.01 in each case. Minimum sample sizes
required for this level of precision and relative efficiencies

(10) are given in Table 3.

Table 3
Minimum Sample Sizes Required to Obtain a Value Equal to 0.01
for the Coefticient of Variation of the Estimator of the Population
Mean, Under the Geometric Stratification (71, ), Optimization
Approach (ny,4y,), and LH Algorithm (n,y); and Efficiencies of
the Geometric Stratification Relative to the Optimization
Approach (effyeqm opim)> the Geometric Stratification
Relative to the LH Algorithm (eff,q,, 1), and
LH Algorithm Relative to the Optimization
Approach (effy 1 yptim)

Number
Of strata L ngeom nopﬁm nLH effgeom, optim effgeom, LH effLH, optim

Population 1

4 805 496 496 1.63 1.63 1.00

5 613 344 344 1.78 1.78 1.00

6 460 252 252 1.83 1.83 1.00

7 357 192 192 1.86 1.86 1.00
Population 2

4 483 248 259 1.94 1.86 1.04

5 329 154 163 2.14 2.02 1.06

6 224 113 117 1.98 1.92 1.03

7 180 83 83 2.17 2.17 1.00
Population 3

4 782 410 411 191 1.90 1.00

5 601 303 304 1.98 1.98 1.00

6 495 242 241 2.04 2.05 1.00

7 422 195 195 2.11 2.16 1.00
Population 4

4 839 409 409 2.05 2.05 1.00

5 650 301 301 2.15 2.15 1.00

6 552 240 242 2.30 2.28 1.01

7 -1 200 200 - - 1.00
Population 5

4 1,768 894 894 1.98 1.98 1.00

5 1,274 628 628 2.03 2.03 1.00

6 949 459 459 2.07 2.07 1.00

7 758 355 355 2.13 2.13 1.00

! There were numerical problems with obtaining stratum boundaries (sample
sizes from some strata were bigger than the sizes of these strata).

From the results it follows that the optimization approach
was more efficient than the geometric stratification; this
outcome was obtained for each population and number of
strata. The relative efficiency was always greater than 1.6.
Moreover, an interesting conclusion follows from the
comparison of the efficiency of the geometric and LH
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stratifications. As already mentioned, Gunning and Horgan
(2004) and Horgan (2006) found the geometric stratification
more efficient than the LH algorithm. On the contrary, in
our study, the LH algorithm was always more efficient than
the geometric stratification. This situation occurred also for
other generated populations of various sizes and skewness
(results not included in this paper). Nevertheless, we do not
state that the LH algorithm is always more efficient than the
geometric stratification. It may happen that the geometric
stratification will be better, as Gunning and Horgan (2004)
and Horgan (2006) obtained in their studies.

From the comparison of the LH algorithm and the
optimization approach it follows that both approaches
provides stratification points leading to similar sample sizes.
In some cases, the LH stratification was slightly better and
in some other cases slightly worse than the optimization
approach. Nevertheless, these differences do not mean that
we could indicate either of these two approaches as more
efficient. In fact, these two approaches have the same aim
(in this particular stratification problem) and they just differ
in the algorithm to achieve this aim. In summary, on the
basis of our results we conclude that, in general, the LH
stratification and optimization approach are more efficient
than the geometric stratification.

5. Conclusions

The stratification technique based on a geometric
progression proposed by Gunning and Horgan (2004) has a
significant advantage; namely, its algorithm is very simple
to implement compared to the cumulative square root of
frequency method of Dalenius and Hodges (1959) and to
other stratification methods. It is, however, an approximate
stratification procedure, so the stratification points it
provides may lead to poor precision of estimation (or a large
sample size required to achieve a required level of
precision). Furthermore, it is likely that some of the strata
constructed will not fulfill the constraints (5); e.g., some
strata may be empty (so they would not comprise any
population element) or/and sample sizes from some strata
may be smaller than two or greater than their population
sizes.

In our study, the optimization approach (via the LH and
random search algorithms) was more efficient than the
geometric stratification for each population studied and
number of strata constructed. Nevertheless, the strata
boundaries provided by the geometric stratification can be
seen as efficient initial parameters required in the
optimization approach; they should not be considered,
however, as the optimal or efficient strata boundaries.
Furthermore, our results conclusively show that the
geometric stratification is less efficient than the stratification
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presented by Lavallée and Hidiroglou (1988), which is the
result opposite to the one obtained by Gunning and Horgan
(2004) and Horgan (2006). This problem needs further
studies on real skewed populations; investigations on
artificial populations univocally show that the LH algorithm
and the optimization approach are more efficient than the
geometric stratification.

At first look, one could be surprised that the gain in
efficiency after applying the LH and optimization
approaches compared to the geometric stratification
increases after increasing the number of strata. This can be
easily explained. The aim of the geometric stratification is to
equalize cvs of the stratification variable within the strata.
Therefore, this is not the same aim as the aim of strati-
fication, which is to optimize the efficiency of estimation or
to minimize a sample size. Furthermore, there is no certainty
that under the optimum stratification the distribution of the
stratification/survey variable is uniform within the strata.
These two sets of strata boundaries (i.e., provided by the
geometric and optimization approaches) are not necessarily
the same; in fact, they are likely different.

Note that we applied the random search method as the
algorithm of the optimization approach to stratification. In
fact, Lavallée and Hidiroglou’s (1988) algorithm is a
representative of optimization approaches, too. When the
aim of stratification is to minimize a sample size required to
achieve a desired level of precision, the two approaches will
likely provide similar results, as they did in our study.
Nevertheless, the random search algorithm may be applied
to any stratification problem (i.e., any optimization function
and its constraints), contrary to the LH algorithm, which is
applicable only when a sample size is minimized with
respect to a given level of precision. It is to be noted that the
random search algorithm, as a global optimization method,
provides random results.

Our aim, however, was not to promote any of these two
algorithms by showing that they are more efficient than the
geometric stratification. In addition, we applied Nelder and
Mead’s (1965) simplex method to stratify the populations
(results not presented in the paper); its results were very
similar to those of the LH and random search method
algorithms. Each of these methods has some drawbacks. For
instance, numerical difficulties may occur while using the
LH algorithm (Slanta and Krenzke 1996); the random
search method provides random results (Kozak 2004);
Nelder and Mead’s (1965) method may be inefficient under
large number of strata and large populations (Kozak 2004);
and, in fact, none of the methods has been proven to provide
optimum stratification points. Therefore, there is still a need
of constructing a stratification algorithm that would be
optimum irrespective of the situation (e.g., of a population
size or variable’s skewness) and that would provide results
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that are not random. Our main aim was to prove that the
geometric stratification is not optimum, although the
stratification points it provides may be useful as initial
parameters in other approaches to stratification.

Acknowledgements

The authors are very indebted to the referees and the
Associate Editor of Survey Methodology for their valuable
comments, which helped to improve the first version of this

paper.

Appendix

The algorithm given below was proposed by Kozak
(2004); we have adapted some of its details to the general
stratification problem. In the algorithm, we do not refer to
the particular problem of stratification (i.e., we do not define
the optimization function and its constraints), since the
algorithm works for both problems presented in the paper as
well as for other stratification problems. Where required, we
refer to “optimization function” (which may be either the
variance of an estimator considered or a sample size from a
population) and “constraints” (which, depending on the
optimization function, may be the constraints (5) and (6), or
the constraints (5) combined with the constraint on the level
of precision of estimation); certainly, other forms of the
optimization function and its constraints may be considered
as well.

Let us define a vector a as follows. It takes values on the
interval (1, N), N being the population size. Provided that a
population is sorted by the values of a stratification variable
X, two elements a, , and a, of the vector a define the
stratum / in such a way that this stratum consists of the
elements with the index / (which gives the order of an
element in the population sorted) that a,  </<gq,,
h=1,...,L,a,=0,a, = N. The algorithm is as follows.

1.  Sort the population by the values of the
stratification variable.

2. Choose an initial vector a, i.e., the vector of initial
strata boundaries. You may use random integers
that satisfy the constraints, but practice shows that
better results may be achieved by using approxi-
mate strata boundaries obtained via some approxi-
mate stratification methods. Calculate the value of
the optimization function. Check the constraints; if
they are not fulfilled, the initial points have to be
changed.
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3. Forr=0,1,..., R repeat the following step:

a. Generate point a’ by drawing one stratum
boundary a, and changing it as follows

" .
a,=a;+],

a,=a, fork=1,...,L-1k#i, (11

where j is the random  integer,
je (—p;—l}u(l;p), p being a given integer
chosen based on the population size (the larger
the population, the larger the p value); usually, it
should be between 3 and 5.

b. Calculate the value of the optimization function.

c. If the constraints are satisfied and the value of
the optimization function under the vector a’ is
smaller than the value under the vector a, accept
the new vector, ie., a,,, =a' (where a _, is
the vector of strata boundaries in a next
iteration); otherwise do not accept the vector,
ie,a, =a

4. Finish the algorithm if the stopping rule is fulfilled,
e.g., if =R, where R is given number of steps, or
if in the last m (for instance, 50) steps the value of
the optimization function did not change. Finally,
calculate the vector k (the vector of final strata
boundaries) on the basis of the values of the
vector a.
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Indirect Sampling: The Foundations of the Generalized
Weight Share Method

Jean-Claude Deville and Pierre Lavallée !

Abstract

To select a survey sample, it happens that one does not have a frame containing the desired collection units, but rather
another frame of units linked in a certain way to the list of collection units. It can then be considered to select a sample from
the available frame in order to produce an estimate for the desired target population by using the links existing between the
two. This can be designated by Indirect Sampling.

Estimation for the target population surveyed by Indirect Sampling can constitute a big challenge, in particular if the links
between the units of the two are not one-to-one. The problem comes especially from the difficulty to associate a selection
probability, or an estimation weight, to the surveyed units of the target population. In order to solve this type of estimation
problem, the Generalized Weight Share Method (GWSM) has been developed by Lavallée (1995) and Lavallée (2002). The
GWSM provides an estimation weight for every surveyed unit of the target population.

This paper first describes Indirect Sampling, which constitutes the foundations of the GWSM. Second, an overview of the
GWSM is given where we formulate the GWSM in a theoretical framework using matrix notation. Third, we present some
properties of the GWSM such as unbiasedness and transitivity. Fourth, we consider the special case where the links between
the two populations are expressed by indicator variables. Fifth, some special typical linkages are studied to assess their
impact on the GWSM. Finally, we consider the problem of optimality. We obtain optimal weights in a weak sense (for
specific values of the variable of interest), and conditions for which these weights are also optimal in a strong sense and
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independent of the variable of interest.

Key Words: Indirect Sampling; Generalized Weight Share Method; Unbiasedness; Optimal Weights.

1. Introduction

To select the samples needed for social or economic
surveys, it is useful to have sampling frames, i.e., lists of
units intended to provide a way to reach desired target
populations. Unfortunately, it happens that one does not
have a list containing the desired collection units, but rather
another list of units linked in a certain way to the list of
collection units. One can speak therefore of two populations
U* and U? linked to each other, where one wants to
produce an estimate for U”. Unfortunately, a sampling
frame is only available for U“. It can then be considered to
select a sample s* from U” in order to produce an
estimate for U” by using the correspondence existing
between the two populations. This can be designated by
Indirect Sampling.

Estimation for a target population U” surveyed by
Indirect Sampling can constitute a big challenge, in
particular if the links between the units of the two popu-
lations are not one-to-one. The problem comes especially
from the difficulty to associate a selection probability, or an
estimation weight, to the surveyed units of the target
population. In order to solve this type of estimation
problem, the Generalized Weight Share Method (GWSM)
has been developed by Lavallée (1995) and Lavallée (2002),
and presented also in Lavallée and Caron (2001). The

GWSM provides an estimation weight for every surveyed
unit of the target population U”. Basically, this estimation
weight corresponds to a weighted average of the survey
weights of the units of the sample s*. The GWSM is an
extension of the Weight Share Method described by Ernst
(1989) in the context of longitudinal household surveys.

The purposes of this paper are to describe Indirect
Sampling-the foundations underlying the GWSM-and to
obtain optimal weights from the GWSM that provide
unbiased estimates with minimum variance. First, we will
describe Indirect Sampling together with the GWSM in a
theoretical framework that will use, for instance, matrix
notation. The use of matrix notation for the GWSM has
previously been presented by Deville (1998). Second, we
will use this theoretical framework to state some general
properties associated with the GWSM that include
unbiasedness and transitivity. Transitivity is to go from the
population U to a target population U, through an
intermediate population U”. Third, we will show the
correspondence between the matrix formulation and the one
that has been described in Lavallée (1995), Lavallée (2002),
and Lavallée and Caron (2001). Fourth, we will study the
effect of various typical link matrices between U and U”
on the precision of the estimates obtained from the GWSM.
Finally, we will assess the problem of optimality. We will
obtain optimal weights in a weak sense (for specific values

1. Jean-Claude Deville, Laboratoire de Statistique d’Enquéte (ENSAI/CREST), Campus de Ker Lann, rue Blaise Pascal, 35170 Bruz, FRANCE. E-mail:
deville@ensai.fr; Pierre Lavallée, Statistics Canada, Ottawa, Ontario, K1A 0T6, CANADA. E-mail: pierre.lavallee@statcan.ca.
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of the variable of interest), and conditions under which these
weights are also optimal in a strong sense and independent
of the variable of interest.

2. Indirect Sampling

As mentioned in the introduction, with Indirect Sampling,
we select a sample s* from a population U* in order to
produce an estimate for a target population U”. For that, we
use the correspondence existing between the two popu-
lations. For example, assume that we want to produce esti-
mates for a population of children (collection units) while we
only have a sampling frame of parents. The target population
U? is the one of the children, but we need to select a sample
of parents before being able to interview the children. This is
illustrated in Figure 1.

J i
1><1
2 z
3/ .

©) 4
4/5
54 6
6/;

Figure 1. Population U# of parents and population U? of
children with the links between the two.

Let the population U* contain N* units, where each
unit is labeled by the letter ;. Similarly, let the target
population U? contain N? units, where each unit is
labeled by the letter i. The correspondence between the two
populations U* and U” can be represented by a link
matrix © ,, = [GfiB] of size N* x N® where each element
OfiB >0. That is, unit j of U" is related to unit ; of U”
provided that OfiB >0, otherwise the two units are not
related to each other. For the above example, the link matrix
is given by
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62 0% 0 0 0 0 |
0702 0 0 0 0
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Obtaining the link matrix link matrix © ,; =[67] is a
critical issue in Indirect Sampling. For the case where two
units jeU" and ieU? are not linked, we simply set
OfiB =0. When there is a link between two units ; and i,
the choice of OfiB >0 is important. As we will see, it
influences the precision of the estimates issued from Indirect
Sampling. Now, in several applications, the values of OfiB
for the linked units are simply set to 1. Of course, the values
of OfiB for the linked units can be chosen to be different
from 1. Lavallée and Caron (2001) discussed the use of the
linkage weights obtained from a record linkage process
between U* and U” for assigning values to the 6;‘,.3 . The
linkage weights are proportional to the probability of two
units jeU" and i e U® being linked. Since the choice of
OfiB >0 for two linked units ; and i can affect the
precision of the estimates, it is natural to seek for those OfiB
that will minimize the variance of the estimates. This
optimization problem is considered in section 6 of the paper.

With Indirect Sampling, we select the sample s of n”
units from U* using some sampling design. Let n} be the
selection probability of unit j. We assume />0 for all
jeuU™ For each unit ; selected in s”, we identify the
units i of U® that have a non-zero correspondence, i.e.,
with 657 >0. Let Q" be the set of the n” units of U”
identified by the units jes?, ie, Q¥ = {icU?|3jes”
and OfiB >0}. For each unit ; of the set Q°, we measure
a variable of interest y, from the target population U”. Let
Y={y, ..., ¥,»} be the column vector of that variable of
interest. In a practical view point, it is important to mention
that although the sample size n* is usually determined in
advance, the number of units n® is difficult to control
because it depends on the selected sample s* and the link
matrix @ ;. As a consequence, it turns out to be difficult in
general to establish a budget for measuring the variable of
interest y,. Fortunately, in most applications (e.g., the
parents-children case above), the number of links that start
from a given unit ; of s is somewhat predictable (for
example, a parent typically has one, two, or three children),
which helps to assess how many units ;i of U” will finally
be measured.

We assume that for any unit ;j of s”, the correspon-
dences for i =1, ..., N can be obtained. That is, we can
identify all the links between the two populations by direct
interview or by some administrative source for any sampled
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unit j. Also, for any identified unit ; of U”, we assume
that the links for j=1, ..., N* can be obtained (as men-
tioned by Lavallée (2002), there are cases where this last
constraint can be difficult to satisfy in practice. Referring to
the example of parents and children, it might not be easy for
a very young child, selected through his mother, to mention
back his father, when the two parents are divorced. In order
to simplify the discussion, such a problem of identification
of links will be assumed to be negligible). Therefore, the
values of the links need not to be known between the entire
populations U# and U”. In fact, we need to know the links
(and consequently the values of OfiB ) only for the lines j
of ®,, where jes”, and also for columns i of @
where i € QF.

Suppose that we are interested in estimating the total Y”
of the target population U® where Y* = Zf\j v,. We can
also write Y” =1, Y where 1, is the column vector of 1’s
of size N® (note that we use for simpliﬁcation the notation
1, instead of 1,,). Now let 0" = ZN OAB and let
057 =077 /077, We have T’ "0, =107 . eAB ). We
then deﬁne the standardized link mamx 0,=
0 ,, [diag(1’,0 ,,)]"", where diag(v) is the square matrix
obtained by putting the elements of the row-vector (or
column-vector) v in the diagonal, and 0 elsewhere. Note
that in order for the matrix @ ,, to be well defined, we must
have [diag(1/,® ,,)]"' to exist, which is the case if and only
if Off >0 for all i=1, .., N° For the parents-children
example, this means that every child must be linked to at
least a parent.

Result 1:
The link matrix @ .z 18 a standardized link matrix if and
only if

@.1)

0 ,1,=1,

The proof of Result 1 follows directly from the definition
of a standadized link matrix. Using Result 1, we directly
obtain Result 2 that can also be found in Deville (1998):

Result 2:
Y?=1,Y

BAB

0,,Y= ZZ o7 Vi

Jj=1i=1

2.2)

Let us define the column vector Z =@ Y of size N*.
Considering each line of Z, the variable z, = A OAB v, 1s
defined for each unit j of the population U* and measured
for each unit j e s*.

For estimating Y”, we want to use the values of y,
measured from set Q. For this, we will use an estimator of
the form:
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NB
=2 W, (23)
i=1
where w, is the estimation weight of the unit i of Q”, with
w, =0 for igQf Let W= {w), ..., ws}. The estimator
(2.3) can be rewritten as

Y8 =W'Y. (2.4)

Usually, to get an unbiased estimate of Y”  one can
simply use as the weight the inverse of the selection
probability n” of unit i. As mentioned by Lavallée (1995)
and Lavallée (2002), with Indirect Sampling, this probability
can however be difficult, or even impossible, to obtain. It is
then proposed to use the GWSM, which is defined as
follows.

Let n* = {n/, ..., n;,,}' and let T, = diag(n”) be the
diagonal matrix of size N*x N* containing the selection
probabilities used for the selection of sample SA.
Accordingly, let t* = {#/, ..., N,,} where t =1if jes’
and 0 otherwise. Let T, = diag(t”) be the dlagonal matnx
of size N*xN* contalmng the indicator variables t
Starting from ¥* =1/,0,,Y =1/,Z, we can directly form
the following HorV1tz-Th0mpson estimator in terms of the
vector Z :

Y =1,T,II)Z (2.5)

Using the fact that Z=©,Y, we have Y’=
1,T,I,®,Y and therefore we can define the column
vector W of weights:

wW=0,TI/1, (2.6)

The vector W is of size N2 and for each i =1, ..., N,
we have w, = ZN it OAB /n The weights w, of that
vector are said to be obtamed from the GWSM, as described
by Lavallée (2002).

3. Properties of the GWSM

3.1 Unbiasedness

As mentioned by Ernst (1989), to get an unbiased esti-
mator, we only need to have E(W)=1,. By construction,
because the estimator (2.5) is a Horvitz-Thompson estimator,
this condition is directly satisfied and therefore, the GWSM
produces unbiased estimates.

From this discussion, we can in addition obtain the
following result:

Result 3:

The vector of weights W given by (2.6) provides
unbiased estimates if and only if the matrix @, is a
standardized link matrix.

Statistics Canada, Catalogue No. 12-001
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Proof:
Starting from (2.6), we have
E(W)=0',1, 3.1

Using Result 1, we directly get £(W) =1, and therefore
we have unbiased estimates. Now, assume that £(W) =1,.
From (3.1), we must have @’,,1, =1, and therefore, © ,
is a standardized link matrix.

3.2 Variance

Because the estimator (2.5) is a Horvitz-Thompson
estimator, we directly obtain the following result:

Result 4:

The variance of ¥* is given by
Var(Y?)=Z'A ,Z
=Y'AY (3.2)

A A4 A_A : _ :
where A, —[(njj, chnj,)/njnj,]N,,xN,1 1S a non-negative

definite matrix of size¢ N* x N* and where nfj, is the joint
selection probability of units ; and ;' from U”, and
where A, =0',A O ..

For a proof of the variance of the Horvitz-Thompson
estimator, see Sdrndal, Swensson and Wretman (1992).

3.3 Transitivity

Let us suppose that we are interested in producing
estimates for a target population U® that can only be
reached through the population U”. We assume that the
target population U contains N units, where each unit is
labeled by the letter k. The correspondence between the
two populations U” and U can be represented by the link
matrix @ ,. =[0.°] of size N® x N© where each element
02¢ > 0. That is, unit ; of U” is related to unit & of U
provided that ©2° >0, otherwise the two units are not
related to each other.

We can now use Indirect Sampling by transitivity. For
this, we select a sample s* from the population U* and
first identify the set Q® of U”. From this set Q°, we then
identify the units of U that are associated in order to form
the set Q° = {ke U |3ieQ” and 02 >0} of units to be
measured from the target population US. An important
question is to see if the GWSM, when applied in the context
of Indirect Sampling by transitivity, is also transitive. That
is, is applying the GWSM from U* to U”, and then from
U® to UC, is equivalent to directly applying the GWSM
from U to U ?

First, consider using Indirect Sampling from U directly
to the target population U°. By going from the population
U” to U®, and then to U, this can relate to having the
link matrix @ ,=[6%"] of size N* x N defined as @ ,.=
0 ,,0,.. For each unit ; selected in s, we identify the
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units & of U® that have a non-zero correspondence, i.e.,
with Gfkc >0, to obtain the set Q° ={kcU |3 jes” and
Gfkc > 0}. We measure the variable of interest y, from the
target population U < Applying the GWSM, we obtain from
(2.6) the following weights:
WC = (:)LICTAHZIIIA

where © ,. =0 . [diag(1,0 ,.)] "

Let us now consider using Indirect Sampling in two
steps. For each unit ; selected in s”, we identify the units
i of U? that have a non-zero correspondence, i.e., with
OfiB >0. As before, we have Q° ={icU” |3 es” and
OfiB >0}. For each unit ;i of the set Q”, we then identify
the units k& of U® that have a non-zero correspondence,
ie, with 05 >0. We then have the set Q° = {ke
US|3ieQ” and02° >0}. From (2.6), we have the
column vector W, of weights associated to the units of
population U” :

(3.3)

wW,=0',TI 1, (3.4)

For each unit i of the set QF, we then have a non-zero
weight w”. Now, the set Q” can be seen as a sample of
units that are used in an Indirect Sampling process to
identify the set Q€. By similarity with Indirect Sampling
from the sample s to the target population U”, applying
the GWSM in the context of Indirect Sampling from the set
Q" to the target population U produces the following
weights:

W, =0, T, diag(W,)1, (3.5)

where @,. =0, [diag(1,0,.)]"" and T, =diag(t,)
with tB:(tlB, - tf,g)' and tl.le if ieQ®f and 0
otherwise. Because the weights w’ =0 for i¢Q”, we

have T, diag(W;) = diag(W;). Therefore, we obtain

W, =0, diag(W,)1,. (3.6)
Replacing W, by (3.4) in equation (3.6), we get
W, =0} diag(®, T, 11, 1)1,
=00/, T, /1, 3.7)

Since 0,,.0',1,=0,.1,=1., from Result 1, the
matrix @ ,,0,. is a standardized link matrix. Because of
this, the GWSM is therefore transitive, at least in some
sense. That is, the weights W, can be obtained in a single
step by using the standardized link matrix @ ,,0 . into the
GWSM. Now, for the GWSM to be perfectly transitive, the
weights W, provided (3.7) would need to be exactly the
same as the weights W,. provided by (3.3). By comparing
equations (3.3) and (3.7), we obtain the following result:

Result 5:

Applying the GWSM from U* to U”, and then from
U? to UC, is transitive if and only if
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(:)AC = (:)AB(:)BC' (3-8)
Unfortunately, condition (3.8) does not hold in general.
In fact, it is relatively easy to construct examples where

OAC * OABOBC'

4. A Structural Property of the GWSM

In the present section, we stress the fact that with Indirect
Sampling, the sampling process depends only on the links
between the two populations U* and U”. The values of
the OfiB themselves, apart from being zero or not, do not
interfere in the sampling process. On the other hand, the
values of the OfiB do have a role in the weights, and
therefore the estimator, issued from the GWSM. We extend
this idea in the following paragraphs.

Indirect Sampling associates to each sample s* in U* a
sample Q° in U®, namely Q°={icU”|3jes’
and 6;1,.3 > 0}. Thus, a function f:s* — QF that maps the
sample s” to the sample Q° is uniquely determined by the
set of couples (j, i) with OfiB >0. Let lﬁB =1if OfiB >0,
and 0 otherwise. These are the elements of the incidence
matrix of the graph linking U to U”.

Suppose we are given a function ¢ from the set of
subsets of U into the set of subsets of U”. Like f,
suppose that ¢ satisfies the “Union Property”:
o(s Usi)=d(s)Ud(s)), where SlA and S; are two
subsets of U

Result 6:

The function ¢ is determined unequivocally by a zero-
one link matrix.

Proof:

This can be shown as follows: Take sf ={j} for some
unit j in U”. Then, d)(sf) isasetin U”. Let lﬁB =1if
unit ; of U”? belongs to d)(sf), and 0 otherwise. By the
Union Property, ¢(s™) =U,-ESA¢(S;-1) and the set of l;f.B
defines the zero-one link matrix L, =[! ;:B ] of size
N*x N*®, which precisely defines the function ¢.

This provides us an equivalence relation between link
matrices, associated with a deeper property. Let p* be a
sampling design on U* (i.e., a probability distribution on
the set of subsets of U"). The function f induces a
sampling design on U? by p®(Q°)= ZSA:Qs:f(SA)pA (s™).
As the design is induced by f, it does not depend on the
particular link matrix © ,; defining the function, but is
rather a characteristic of the equivalence class through the
zero-one link matrix L ,,. As a consequence, the Horvitz-
Thompson estimator in U® depends only on this class. It is
therefore of some interest to choose in this class a matrix
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® ,; having, in some sense, an optimal characteristic (see
section 6).

5. Special Link matrices

As it can be seen from the previous sections, the link
matrix @ ,, drives the form of the estimator (2.4) obtained
from the GWSM. In this section, we present some special
link matrices @ ,, that correspond to extreme cases.
Although not all such cases are likely to be seen it practice,
they illustrates the effect of the link matrix on the estimator
2.4).

5.1 Identity Matrix

Assume that the link matrix © ,, is given by the identity
matrix I. In practice, this means that the population U*
and the target population U” have a one-to-one relation-
ship. Of course, this implies that N* = N® =N and that
the identity matrix I is of size N x N.

As a first result, we have @ ,, =I. As a consequence,
the vector of weights (2.6) is given by W'=(t"/n/, ...,
t;l,,, /n;,, ) and we also have Z =0 ,,Y =Y. Therefore, the
estimator ¥® given by (2.5) turns out to be nothing else
than the Horvitz-Thompson estimator ¥* =1, T,IT}'Y.

5.2 One for All (Within Clusters)

Consider the case where the population U? is divided
into I" clusters where each cluster y is of size NYB . Theses
clusters are such that each cluster y from U? is associated
to exactly one unit j of U”. Because of this, we can use
the letter y for both the units j from U* and the clusters
from U”. Note also that ' = N

This situation corresponds to a link matrix @ ,, being
block diagonal where each submatrix contains only one line.
Let the row vector 13, be of size NYB and containing only
1’s. The link matrix @ ,; is then defined as

(1, 0 - 0]

©,=|0 1, 0 (5.1)

0 .. 0 1

We can also write @ ,, =diag({l},, ..., 15-}). Using
this, we have diag(1,® ,,) = diag(1, diag({L},, ..., 1 })) =
diag({1),, ..., 1,.}) and hence © ,, =® ,,. From equation
(2.6), we obtain the column vector of weights W'=
' /n' 1y, ., ! /nf 1,). Aswe can see, the elements of
the column vector W have the values tYA /n;1 repeated
within each cluster y of U”. From (2.4), we obtain
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r A
= ZLA (5.2)
=1 Y
where YYB = Z,AZ Vi
5.3 All for One (Within Clusters)
Consider the case where the population U* is divided

into I' clusters where each cluster y is of size NYA. Theses
clusters are such that each cluster y from U is associated
to exactly one unit i of U”. Because of this, we can use the
letter y for both the clusters from U* and the units ; from
U”. Note also that ' = N*.

This situation corresponds to a link matrix @ ,, being
block diagonal where each submatrix contains only one
column. Let the column vector 1, be of size NYA and
containing only 1°s. The link matrix @ ,; is then defined as

1, 0 -0

(5.3)

We can also write O ,, =diag({l,, ..., 1,+}). Using
this, we have @ ,, = diag({l/N;'1,,, ..., I/N/1,.}). From
equation (2.6), we obtain the column Vector of weights

W =(1/N'% ,1, /Jr oy 1/ N/ Z, it /Jr ). Thus, the
elements y (or l) of the column vector W have the aver-
aged values Z s 4/ ; N y—l , I. From (2.4), we
obtain ¥* = Zl;lyy/N Z t! /n

J=LY
5.4 Inefficient Sampling

Suppose that some rows of the link matrix ® ,; contain
only zeros. This means that some units of the population
U* are not associated to any unit of the target population
U”. Then, if such units are selected in the sample s”, this
will lead to the identification of no unit from U”. This can
be seen as inefficient in a sampling point of view. In a more
formal way, assume that each of the first N'* rows of the
link matrix @ ,, contains at least one 6, >0, and that they
form the submatrix @,. Assume that the other N°* rows of
®,; have 0, =0 for i =1, .., N®. We therefore have

As a first result, we obtain

0, = {Ol[diag 148, )]_1} = Pl} (54)
0 0
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where 1,, is the column vector of 1’s of size N'*. From
equation (2.6), we obtain the column vector of weights
W=[0; 01T, I;'1,. Let I, =diag({n], ..., m}..}) be
the diagonal matrix of size N'* x N'* and accordingly, let

T, , = diag({t/", ..., N”}) be the diagonal matrix of size
N"xN'". We then get

W =[O 0T, 11,1,

=0T, 1,1, (5.5)

As we can see from (5.5), the weights only depend on the
probabilities of selection 7} of the units of U* that have at
least one 0, >0 for i=1, .., N®. From (2.4), we finally
obtain ¥ =1/, T, ,I1,,0,Y.

5.5 Biased Estimator

Suppose that some columns of the link matrix @
contain only zeros. This means that some units of the
population U” are not associated to any unit of the target
population U”. Recall that in order for the matnx 0 5 1O
be well defined, we must have diag(1,® ,,)”" to exist. As
we will see, the present case does not satisfy this condition.
This results in a biased estimator for the total Y.

In a more formal way, assume that each of the first N'”
columns of the link matrix @ ,; contains at least one
0, >0, and let them form the submatrix @®,, different
from the one of the previous section. Assume that the other

N°® columns of @ ,, have 0,=0 for j=1, .., N We
therefore have ® ,, =[0,, 0].
From this definition, we directly have
[diag(1,© )] =[diag([1,©,.1/,0)]"
-1
diag(1',@,) 0
_ g(1,0,) ' (5.6)
0 0
Since this matrix is singular, [diag(1,,® ;)] does not

exist. As a solution to this problem, it could be possible to
use a generalized inverse. Recall that for a given square
matrix A, the matrix A~ is a generalized inverse of A
provided that AA"A =A (Searle 1971). One possible
generalized inverse of (5.6) is

[diag(1,©,)]"
ol

. (5.7)

[diag(1',© ;)] {

With this generalized inverse, we have the following
standardized link matrix ©_ =0 , [diag(1,® ,)] =
[©,,0]. Starting from equation (2.6), we can obtain the
column vector W_ of weights:

' -1
W = {OITAHA IA}. (5.8)

0!
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As we can see from (5.8), the weights are null for the
units i of the target population U” that @ ,, have 0
for j=1, .., N”. From (2 4) and using W_ instead of W
we obtain Y_B 1,T,IT,OY, where Y, ={y, ..., AT
is the subvector constructed from the N'? first elements of
Y. Since in general E(Y’)=1,0,Y,=1,Y=Y", this
estimator is biased for the total Y.

6. Optimality

Optimality is an important aspect of the GWSM. As it
has been shown in Result 3, the estimator Y* obtained by
the GWSM will provide unbiased estimates provided that
the matrix © ,, is a standardized link matrix. Now, given
that the variance (3.2) of this estimator depends on this
matrix, there should be at least one matrix © , B.op Such that
the variance of the estimator ¥* will be minimum. That is,
for the OAB that are greater than 0, we are interested in
finding the values that these OAB should have to obtain the
most precise estimator Y. &

This optimality problem was first assessed by Kalton and
Brick (1995). They obtained results based on the simplified
situation where N“ =2 and with s* obtained through
equal probability sampling. Their conclusions suggested the
use of 057" =1 when 6% >0, and 67" =0 when
OAB =0. Lavallee (2002) and Lavallée and Caron (2001)
obtamed results along the same lines by the use of
simulations. In the present section, we present new results
on the optimality of the GWSM.

6.1 Factorization

Factorization is the reverse problem of transitivity. It
consists in finding a population U and standardized link
matrices @ ,,and @, such that © ,,=0,.0,, This
leads to an important simplification in searching for an
optimal standardized link matrix © , Bopt-

The population U® can be taken as being one of
clusters, the factorization being achieved in the context of
“one for all (within clusters)” (from U* to U) and “all
for one (within clusters)” (from U to U?), as presented in
sections 5.2 and 5.3. This can be described in a very general
way as follows. Consider a population U containing as
many units as there are links starting from the units ; of
U". The population size N is then given by the number
of OfiB of ® ,, that are greater than 0. Each unit g of U°
can be seen as the extremity of an “arrow” starting from
some unit j of U”. From this graph, there is only one link
matrix @, of size N?xN® keeping unbiasedness,
namely O ,. :[Ong] where Gng =1 if there is a link (or an
“arrow”) leaving unit j of U” to unit g from U, and
Gng =0 otherwise. Note that by construction, each unit g
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from UY is linked to at most one unit j from U* and
therefore @ ,, =@ .. This corresponds to the “one to all
within clusters” situation presented in section 5.2. Indirect
Sampling from U* to U is in fact standard Cluster
Sampling and leading the GWSM to the usual Horvitz-
Thompson estimator (see Lavallée 2002). For the parent-
children example, the result of this factorization would be
given by Figure 2.

¥l
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6‘ 12‘”””#7
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Figure 2. Result of the factorization of the parents-children
populations.

Considering the graph from U¢ to U”, we can
construct the link matrix @, of size N° x N* as follows.
Because of the definition of the population U, each unit
g of U is linked to exactly one unit ; of U”. Note that
Indirect Sampling in this context can be seen as sampling
clusters (i.e., the units i of U”) from their elements (i.e.,
the units g of U®). It can also be seen as the “all to one
within clusters” presented in section 5.3. Let O, =
0 ,[diag(1,©_,)]" be the standardized link matrix ob-
tained from @, We have diag(1;,0.;)= diag(1,0 ,;),
and therefore ©, = ® ,[diag(1’,® )]

Now,

(:)AG(:)GB = OAG(:)GB
= @AGOGB[diag(l'A@AB )]"1
=0 ,[diag1,0 ;)]

6, (6.1)

Therefore, using this construction, the standardized link

matrix @ ,, from U* to U” can always be factorized into
the two matrices @ ,. and O,
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6.2 Strong Optimality: Statement of the Problem

As mentioned before, the optimality problem that we
consider here is to minimize the variance (3.2) with respect
to the standardized link matrix ©,,. Now, using the
factorization presented in section 6.1, we have

Var(Y?)=Y'®' ;A 0 .Y
= Y'O'GBOLIGAA@AG@GBY
=Y'O,A0O.,Y

where A, =0, A O .

For any standardized link matrix @ ,,, the factorization
presented in section 6.1 always produces the same first
factor @ .. Therefore, if we seek for some optimal matrix
0, B.op that minimizes the variance (3.2), it is sufficient to
optimize the second factor ®,. We would also like the
optimal matrix @ , B.opt 10 produce unbiased estimates.

Let U be the subpopulation of U containing the N,
links to the unit i of U”. Note that the subpopulations U
are disjoint. Thus, without loss of generality, we can order
the links from U* to U? so that, for every i, the links to
unit i in U” are indexed consecutively. Now, let 0, , be
the /™ column vector of the matrix O, i=1, .., N° By
construction, the vector @, contains non null elements
only for the N links to the unit i of U”. Hence, letting
05, be a column vector of size N¢ containing the non
null elements of 0, ,, we have

(6.2)

Similarly, let 1;, be the column vector of size N¢
containing 1’s for N elements, and 0’s elsewhere. Letting
1;,; be a column vector of size N¢ containing 1’s, we
have

<

Now, for the GWSM from U to U? to be unbiased, we
need to have 0, 1;,=1 for all i, or equivalently
0,1, =1. All this together leads to the following opti-
mization problem: ~ B

Find a matrix Oy ., = {065 o1 - S~ satis-
fying 0, 16, =1 forall i=1, ..., N°, and minimizing
the quadratic form Var(Y”)= Y'O,,A .0 Y.

This problem turns out to be nothing else than the
minimization of a positive quadratic form under linear
constraints. This is a relatively standard and simple problem
to solve. It is well known that a solution always exists and is
unique if the form (6.2) is positive definite, or if the null

subspace of @, is not included in the null-space of A;.

Statistics Canada, Catalogue No. 12-001

The above optimization problem can be rewritten in a
different form. Let A, be the submatrix of A,
corresponding to the elements in positions g and g’ if g
has a link with unit ; and g’ has a link with unit ;. These
matrices constitute a partition of A,. Note that the matrices
A ; are symmetric, positive definite, and A(; , =Ag .
With these notations, the optimization problem can be
written as:

Minimize

N® N®

z z Vi yi’g'GB, iAG, ii’gGB, i

i=1i'=1

(6.3)

under the constraints 0, 1, =1 forall i=1, ..., N%.
Minimization is achieved for vectors 0, . ; satisfying

NB

yiz AG, ii'OGB, opt, i' Vit = /11'16,[

i'=1

(6.4)

for all i=1,.., N®° and where 4 are the Lagrange
multipliers entering into the constrained minimization of
(6.3). As we can see from (6.4), the optimal choice GGB,OPE ;
(and therefore @5 ) will depend in general explicitly on
the vector Y, which is not useful in practice. Observe that
the set of 4, depends also of the variable Y. This will appear
more explicitly in section 6.3. This is the reason why we will
seek, instead of a strong optimization, for a weaker form of
optimality that will lead to the existence of an “optimal”
solution (:)GB,Opt (and O opt) DOt depending on Y.

6.3 Weak Optimality

Equations (6.4) must be valid for any vector Y. In
particular, a necessary condition is to hold for a particular
variable of interest, such as y, =1 for a unit i of U” and
y, =0 for all other units i of U”® (i’ #i). This leads to the
necessary conditions (one for each of those particular
variables) A 055 opti = 41 - Assuming that A;, is
invertible, we then have 0, ., = 4Ag 15, It can be
shown that this is also a sufficient condition. Now, because
0050016, =1, we have 4 =1/1; ;A7 .1, . Therefore, a
necessary and sufficient condition for equation (6.4) to be
satisfied is when

~ AEr‘liilGi
T ATl 65)
G,i i~ G, i

LGl

0 GB, opt, i

This result corresponds to weak optimization in the
following sense. The weight w, given by (2.6) satisfies
E(w,)=1 and moreover E(w,|ieQ”)=1/n" where n’
is the inclusion probability of unit ; in QF, which is
generally difficult or even impossible to compute in practice.
Now, note that the Horvitz-Thompson estimator is charac-
terized by Var(w,|ieQ”)=0. The weak optimization
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obtained here consists in minimizing Var(w, |i € Q%) over
all possible standardized link matrices @, or equivalently
© ,,. This variance is strictly positive for the cases where
unit ; of U? is in position to receive more than a unique
weight for different sample s*. Moreover, using (6.3), the
multiplier A, appears to be the variance of the weight w,
and is, therefore, always strictly positive (except, a case that
we exclude, when unit i is selected with a weight equal to
one).

6.4 Strong Optimality Independent of Y

Weak optimality is a necessary condition for strong
optimality independent of the vector Y of a variable of
interest. It provides the necessary form of the vectors
055 ot 10 (6.4). To get sufficient conditions for strong
optimality independent of Y, we go back to the equations
(6.4). These equations need to be satisfied for all vectors Y
and they must therefore be satisfied for a particular variable
of interest such as y, =1 for a unit i of U”, y, =1 for
another unit i’ of U”, and y, =0 for all other units ;" of
U® (i" #i' #i). In that case, to satisfy equations (6.4), it is
necessary to have the following relations for any ; and i':

- - i
A i96s.opi T A6.i0ca opr =4 g (6.6)

- i
AG 1968 opi T A6 1968 0pi = 4 16

1

As we must necessarily have weak optimality, we have

Ag 065 op.i = 41, Considering the first line of (6.6), we
then get
AG, ii'GGB, opt, i’ (’11'17 _7\’[)16,[
= (Dii'lG,i' (6.7)

Multiplying both sides of (6.7) by 0(;; opt.i» WE Obtain
= (D[i'e'GB, opt,[lG,[
=0,

~, ~
9GB, opt, [AG, [i'eGB, opt, i’

since é'GB, opti 1 =1. Let @ be the matrix with elements

,» Off the diagonal and @, =4, on the diagonal. Using
again (6.2), it can be shown that the optimal variance
(whenever it exists) has the expression Y'®Y.

Let us show that this set of conditions is also sufficient.
Assume that (6.7) holds. Note that for i =i', condition (6.7)
is nothing else than (6.5) which gives the necessary values
for the 04, opti+ 1t 18 now straightforward to verify that (6.4)
holds whatever the value of Y and that we have obtained
the strong optimality. Now, the values of A, depend on Y,
as well as the variance Var(Y”), but we have that
equations (6.4) always have the same solution (6.5) that
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does not depend on Y. We therefore have the following
result:

Result 7:

The conditions A ; 6@3 opt.it = Pirlg,; are necessary
and sufficient for the existence of a standardlzed link matrix
Os o> OF equivalently 0, o> that achieves strong
optimality independent of the vector Y of the variable of
interest. The values in the columns of this strong optimal
matrix are given by (6.5), which are the vectors 0

GB, opt, i
obtained from weak optimality.
It should be noted that since Ag 0, opti = 4ilg, (6.7)
can be written in an equivalent way as
(DZ* 6GB, opt,i AE;},-,-AG, ii’éGB, opt, i (6.8a)
or
(D:: Ig: = AG,n'AZ:l,i'i'lG,i' (6.8b)
W}:ere ~ T (BGB othAG i’ 0GB opt, 1 )(1 Glu 1G 1) and
(Dii' = (OGB, opt, tAG, ii 0GB, opt, i’ )(1 AE; i’ 1G i ) In some

situations, these can proved to be easier to use that the
expresssion (6.7) stated in Result 7.

6.5 Two Examples

We now present two examples that illustrate the
preceding theory on weak optimality and strong optimality
independent of Y.

Example 1: Poisson Sampling

Let us suppose that the sample s is selected using
Bernoulli or Poisson Sampling. In that case, the N* x N*
matrix A, is given by A, = diag(l/n;1 —1). Considering
the factorization of section 6.1, we have AG =
OAG A OAG = ®AG [dlag(l/n -1]6 AG —[dlag((l/n -
N1 Ly, )] where 1, . is a square matrix of size N w1th
N belng the number of links (or “arrows”) startmg from
umt j of U”. From A, we extract the submatrices Agi
that are, in the present case, dlagonal Each submatrix AG, i
is given by Ag ;= dlag(l/n —1), which is of size N’.
Note that each value (1/ n —1) simply corresponds to a
unit j of U* that has prev10us1y been linked to the unit g
of U, which is in turn linked to the unit ; of U”. Now,
from (6.5), we directly obtain the optimal values 0, opt, i
that minimize Var(Y”), in the weak sense. These values
are given by the vectors

A
NG

2
(1-m3e) T

A T
=, T

(1-mHt’’

GB,opt,i —

where
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G NP
T _z g=1

ng l(l-n), i=1, ..., N°.

The 0y, opti are used to construct the vectors 0 6B, opt.i» and
then the matrix @)GB’OPt = {(-)GB’OW, ves (-)GB o)+ Finally,
after computing the optimal matrix @ 5 = AGOGB, opt>

we obtain the optimal weights W using (2.6).

It should be noted that if the inclusion probabilities nf

are equal, we get
B 1] 1
- W, ceey F _FIGB,I’

1 1 1

055 0pt.i
where N is nothing else than the number of units of U*
linked to unit i of U”. In other words, in the context of
Bernoulli Sampling (i.e., Poisson Sampling with equal
probabilities), to minimize the variance Var(Y”), the
choice of the values (9fpL ;i should be given by 1 if there is a
link between unit j of U* and i of U”, and 0 otherwise.
This corresponds to the results obtained by Kalton and
Brick (1995), Lavallée (2002), and Lavallée and Caron
(2001).

Using Result 7, we now verify if conditions (6.7), (6.8a)
or (6.8b) are satisfied for the optimal matrix @ ,, ,, that we
obtained through weak optimization. If it is the case, this
matrix also provides strong optimality independent of the
variable of interest y,. First, we have

A
T
Ay, =diag| —5— |.
’ l-m,

Also, each submatrix A ;, of size N x N has somewhat
a diagonal structure, but “padded” with zeros. That is, a
typical element of A ;. is given by (1/ n; —1) ona part of
the diagonal if both ; and i’ are linked to the same unit j
of U” (that is linked to unit g of U® coming from the
same j of U"), and 0 otherwise. Because of this, if two
units i and i’ are not linked to the same units of U*, then
Ag i 18 a matrix of zeros, and then the conditions (6.7),
(6.82) and (6.8b) are automatically satisfied. Referring to
Figure 1, children i =2 and i’ =3 of U” are not related to
the same parents j of U”. If the selection of the parents is
done using Poisson or Bernoulli Sampling, the 2 x 2 matrix
A »; will then contain only zeros, ie.,

W [0
G,23_00'

Because if this, the relations (6.7), (6.8a) or (6.8b) will be
satisfied with @,, =0, expressing the fact that the weights
of i and ;' are not correlated.
If two units i and ;' are linked to the same unit j of
U, then, using (6. 7) the column Vector AG p HGB opt. 7
contains the scalar (7)™ :[ ln /(1 - T, D for its first
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N/ components, and 0 for the remaining N/ — N/ ones
(assuming N? > N”). Because the quantity A ii'éGB, opt. 7
must be equal to @;1;; to satisfy (6.7), it must contain
only the value @,.. Since @, =0y, opt i G,.,.VGGB,OPL,, this
will occur only if the vector OGB, opt.i =[], which means
that there is only one link to unit i of U”. As we can see,
this is not a condition that will be satisfied in general and
therefore, it can be said that in the case of Poisson Sam-
pling, strong optimality independent from Y will not occur
in general.

As a conclusion, we might say that with Poisson or
Bernoulli Sampling, the conditions (6.7), (6.8a) or (6.8b)
will be satisfied in practice only when the units of U* are
linked to a single unit of U”, as in the case of sampling
households using a frame of individuals. In the other cases,
the optimal matrix © ot Obtained through weak
optimality will not likely lead to strong optimization
independent of Y.

Example 2: Simple Random Sampling

Let us suppose that the sample s is selected using
Simple Random Sampling. In that case, the N*xN*
matrix A, is given by

N* (N* - A){I 1A1'A}
AT a1 4 |
n' (N'-1) N

Considering the factorization of section 6.1, we have
Ag = (:)LIGAA@AG

A A A ’
:N_A(NA_—")X@'AG {IA _ﬂ}@m
n' (N'-1) N

N4 (NA _nA) . 1.1
:n_Amx diag(1, ;) - ;AG (6.9)
where 1, is a square matrix of size NJA, with Nf being

the number of links (or “arrows”) starting from unit j of
U?. From A, we extract the submatrices Ag ;- Each
submatrix A ; is given by

N (N ) 1,15,
A .. ——,
Gt = nA (N -1) |: @ N

which is of size N”. Then, using a matrix result that can be
found, amongst others, in Jazwinski (1970), we get

A (N -1 n

1
= x| I 1 15, |
G,ii ( )N |: G,i (NA—NiG) G,i G,l:|

Now, from (6.5), we directly obtain the optimal values

~ 1

-1
GB, opt, i G G
N;
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that minimize Var(¥”), in the weak sense, i=1, .., N®.
These values are used to construct the vectors 0 6B, opt.i» and
then the matrix @)GB’OPt = {(-)GB’OW, s (-)GB yo - Finally,
after computing the optimal matrix O 45 . =0 ;05 s

we obtain the optimal weights W using (2.6).

Again, this result is an important one because it goes
directly in the direction of the results of Kalton and Brick
(1995), Lavallée (2002), and Lavallée and Caron (2001).
That is, with Simple Random Sampling, the optimal choice

of Gf}i ;i should be 1 if there is a link between unit j of
U* and i of U”, and 0 otherwise.

Using Result 7, we now verify if the conditions (6.7),
(6.8a) or (6.8b) for strong optimality independent of y, are
satisfied for the optimal matrix @ ot that we obtain
through weak optimization. First, each submatrix A, of

size N7 x Ny is given by
lG,il'G,i'
|:HG,ii’_ A }
N

where Hg, is a N’ xN; diagonal matrix of ones,
“padded” with zeros. Exactly on the same pattern as in
example 1, a typical element of H ;. is given by 1 if both
i and ;' are linked to the same unit j of U” (that is linked
to unit ¢ of UY), and O otherwise. Therefore, we can
easily see in which cases the conditions (6.7), (6.8a) or
(6.8b) can be satisfied. In fact, because all components of
055 e Areequal, Ag ; OGB opt.i/ 18 @ vector proportional to
the sum of the lines of A; ;. ie., the sum of the lines of

1G il'G,i'
|:HG,ii’ - A }
N

But (6.7) says that this vector must have the same
components. This is possible if and only if the matrix H ,;
contains only zeros, or if it is of dimension 1x1, which
occurs when both i and i’ are each linked to only one
element of U*. Therefore, as for Poisson Sampling, strong
optimality independent of Y does not occur in general for
Simple Random Sampling.

N* (N*=n")
G,ii’ I’lA (N )

7. Conclusion

In the present paper, we discussed the use of Indirect
Sampling together with the method developed to obtained
estimation weights: the Generalized Weight Share Method
(GWSM). We then showed the following properties of the
GWSM: unbiasedness, the wvariance computation and
transitivity. We presented after a section on the use of the
GWSM when the links between the populations U* and
U*® are expressed by ones and zeros, i.e., there is a link or
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there is not. The section after was devoted to results that are
obtained with different forms of link matrices. Finally, we
assessed the problem of optimality, i.e., the choice of optimal
values to express the links between U# and U? in order to
minimize the variance of the estimates issued from the
GWSM. We have distinguished two kind of optimization:
weak and strong optimization.

Weak optimization consists in finding the values of the
links to be used in order to minimize, for each unit, the
variance of the weights provided by the GWSM. The
solution is always uniquely defined, easy to compute and to
implement in practice. Weak optimization is also a necessary
condition for strong optimization. Strong optimization
consists in finding the values of the links in order to
minimize the variance of estimation for the total of any
variable of interest y. It does not exist for all sampling
designs and type of links between the populations U* and
U®. Tt also depends on somewhat complicated relations.

We recommend the use of weak optimization because of
its flows naturally and the fact that it is very easy to use.
Moreover, if our estimation problem can be as well
optimized in the strong sense, we will have achieved it
through weak optimization, even if it was not demonstrated!
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Extension of the Indirect Sampling Method and its Application to Tourism

Jean-Claude Deville and Myriam Maumy-Bertrand '

Abstract

A survey of tourist visits originating intra and extra-region in Brittany was needed. For concrete material reasons, “border
surveys” could no longer be used. The major problem is the lack of a sampling frame that allows for direct contact with
tourists. This problem was addressed by applying the indirect sampling method, the weighting for which is obtained using
the generalized weight share method developed recently by Lavallée (1995), Lavallée (2002), Deville (1999) and also
presented recently in Lavallée and Caron (2001). This article shows how to adapt the method to the survey. A number of
extensions are required. One of the extensions, designed to estimate the total of a population from which a Bernouilli sample

has been taken, will be developed.

Key Words: Generalized weight share method; Incomplete frame and multiple frames.

1. Introduction

A “border survey” of extra-region tourist visits in
Brittany (those not by residents of Brittany) was conducted
over the period from April to September 1997. The
Observatoire Régional du Tourisme de Bretagne and the
Comités Départementaux de Tourisme were interested in
doing another one. Unfortunately, they no longer had the
means to gather a certain mass of data at the regional or
intra-regional borders because the police forces were no
longer interested in collaborating on roadside surveys.

For this reason, the Observatoire Régional du Tourisme
de Bretagne, with the assistance of a technical committee
comprised of methodologists and field operators, decided to
introduce a new survey methodology to replace the “border
survey” methodology. In addition, evaluation of intra-
regional tourism (of residents of Brittany vacationing in
Brittany, for example) is vital to identifying development
factors.

One of the major problems is the lack of a sampling
frame that allows direct communication with tourists. This
problem was addressed by using an approach previously
used in the Asturias in Spain (Valdés, De La Ballina, Aza,
Loredo, Torres, Estébanez, Dominguez and Del Valle
(2001) and Torres Manzanera, Sustacha Melijosa,
Menéndez Estébanez and Valdés Peladez (2002)), which
involves sampling services intended mainly for tourists and
asking them questions at the various locations of these many
tourist service sites. Obviously, a tourist may use one or
more of the services in the sampling frame once or several
times during the survey period in question. To be able to
estimate the parameters of interest with respect to tourists, it
must be possible to conduct a rigorous sample of certain
services and then link the set of weights of the sampled

services to the set of weights of the tourists the tourists who
used these services. The purpose of this article is to present
a method that makes this calculation possible. This method
relies mainly on the generalized weight share method
(GWSM) developed by Lavallée (1995), Lavallée (2002)
and Deville (1999).

2. Generalized Weight Share Method

We will briefly review the principle of the generalized
weight share method (GWSM). For more information, see
Lavallée (1995), Lavallée (2002) and Deville (1999).

We will let U* be a finite population containing N
units, where each unit is denoted by j and U” is a finite
population containing N* units, where each unit is denoted
by i. The correspondence between U* and U” can be
represented by a matrix of links @ 4, :[GfiB], of size
N4 x N® where each element OfiB > 0. In other words, the
unit j of U” is linked to unit i of U”? provided that
OfiB >0; otherwise, there is no link between these two
units.

In the case of the indirect survey, we select the sample
s* of n' units from U” based on a given sampling
design. Let nf >0, be the probability of selection of the
unit ;. For each unit ; selected in s*, we identify the units
i of U? for which OfiB > 0. Then we let s, be all of the

n® units of U? identified using the units j € s, that s,
sP={ieU”?;3jes" and 9;1,-3 > 0}.

For each unit i of s”, a variable of interest y, is
measured.

It is assumed that, for any unit j of s”, it is possible to
obtain the values of OfiB for i=1,.., N® by a direct
interview or from an administrative source. For any unit i

1. Jean-Claude Deville, Laboratoire de Statistique d’Enquétes, ENSAI/CREST, Campus de Ker-Lann, 35170 BRUZ (France). E-mail: deville@ensai.ft;
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identified of U® (or only of s*), it is assumed that we can
obtain the values of GfiB for j=1,..., N 4. For this reason,
it is not necessary to know the values of GfiB for all of the
matrix of links @ ,,. Indeed, we only need to know the
values of GfiB for lines j of @ ,,, where jes”, and for
columns i of @ ,, where i € s”.

For example, if the purpose is to estimate a variable of
interest Y* of target population U”, where

NB
Y?= zyl"
i=1

with y, measured according to the aggregate U”. We then
use an estimator in the form

NE

5B

Y _zwiyi’
i=1

@.1)

Q.1)

where w, is the estimated weight of unit i of s®, with
w, =0 for igs”. To obtain an unbiased estimate of a
variable of interest Y”, we must use as weight w, the
inverse of the probability of selection 7 of unit i. As
mentioned in Lavallée (1995) and Lavallée (2002), it is
generally difficult, if not impossible, to obtain these
probabilities. Consequently, we turn to the GWSM, where
the weights are given by
677

W=

jes”1 ch

where éff = fo /Z]}’:1 Gfl.B . Using this construction, the
estimator Y? is unbiased. Similarly, it is possible to
calculate and estimate the variance of this estimator because
it is the same as that of

jes”1 ch

with z; = P 07y

it

3. Tourism Survey in an Open Environment

3.1 Survey Objectives

The principle of the survey is as follows:
“reach tourists (foreigners or French citizens
whether or not they live in Brittany) through services
aimed at meeting the basic or specific needs”
such as accommodation, food, leisure activities and
transportation.

3.2 Population of Interest

We will let G be a geographic field (the four provinces
of Brittany) and P be a reference period (in this case, it is
from February 2005 to December 2005).
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A tourist is defined as a person who spent at least one
night in G outside his principle residence (tourist-night).

For a tourist, a #rip is an period sej of P, the length of
the cardinal of sej noted as | sej |, during which the tourist
spends all his nights in G outside his principle residence,
the nights immediately before or after the trip sej having
been spent outside G (or at the principle residence.).

A tour is a group of tourists (tourist household) sharing
the same trip and with the same accommodation during the
trip. The term tourist household will also be used through a
slight misuse of the terminology (the same tourist household
can have several tours over a period, but we have no way to
distinguish them).

The statistical unit i of the survey is the tour.

The sub-units of the survey are the trips, tourists and
tourist-nights. A tour i consists of #, tourists during a trip
of duration |sej| and thus n, x |sej| tourist-nights. Here
population U” is therefore the aggregate of the tours in G
during P. (sej N P # QD).

3.3 Survey Sampling Design

To use the GWSM, the theoretical population U* is
formed by a “services” aggregate. In this survey, these
services consist of:

— Purchases in bakeries, being the first stratum of U

— Visits to a set of well known cultural, recreational or
family sites. In practice, for each of them, a
“mandatory pass point” has been defined. It consists
of the total number of people passing by this point,
which is the second stratum of U

— The number of people exiting Brittany by way of the
La Gravelle highway toll, which accounts for 80% of
the exits by tourists from Brittany by car. This
method of transport itself accounts for 80% of the
trips by non-resident of Brittany. People passing this
point constitute the third stratum of U*.

In other words, the sampling frame is formally
constructed of three strata:

1. purchases in bakeries;
2. visits to a set of sites typical of Brittany;
3. people at the La Gravelle highway toll.

In the first stratum, we use a three-stage sample:

— asample of bakeries;
— asample of survey days;
— asample of clients in the bakery on a given day.

In the second stratum, we use a two-stage sample:

— asample of survey days;
— a sample of people who pass through one of the 16
chosen sites on a given day.
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Lastly, in the third stratum, we use a two-stage sample:

— asample of survey days;
— asample of people who pass through the La Gravelle
highway toll on a given day.

It is acknowledged that any tourist household consumes
at least one of the “services” (bakery purchases, visits to
typical Brittany sites, the La Gravelle highway toll)), or at
least, that very few households do not consume any of them.

Each sampling (bakery, days, “service”) requires specific
techniques and it would take considerable time to provide
details on each of them. Nevertheless, we will provide the
following key technical elements:

— bakeries are sampled using a traditional design
stratified geographically (five strata: coastal area of
four Brittany departments, the interior of Brittany).
In each stratum, the bakeries are sampled with
probabilities proportional to their “tourist potential”
constructed from their business revenue, the tourist
accommodation capacity, and the number of prince-
pal residences in the commune to which they belong.
This was the theoretical approach, but in practice,
the sample was somewhat “forced” by unforeseen
circumstances (refusal of bakers, closures during
certain period, for example).

— The sites are not sampled, but rather selected for
their notoriety and the technical possibility of
identifying a “mandatory pass point” (sometimes
approximate).

— For each bakery, each site and the La Gravelle
highway toll, we defined completely homogeneous
“clusters of days” in each period P. A cluster was
assigned randomly to each bakery, site and the La
Gravelle highway toll. In practice, this means that a
full-time enumerator is mobilized for several
clusters.

— For each “service”, tourists are sampled using the
normal techniques of random selection of arrivals:
pseudo-systematic sample because, while the
enumerator is handing out one questionnaire, other
people are going by without being counted. This
means that the total number of visitors cannot be
estimated directly. If a site is accessible through a
ticket booth (museum or chateau, for example), the
sampling relies on this means. Ultimately, the
sample of users of a “service” on a given day is
considered a Bernouilli sample, that is, a simple
random sample if we know the size of the population
(the number of visitors on a given day).

Comments 3.1. The definition of fourist itself is linked to
accommodation and it seems natural to use a frame directly
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related to this service. Practice shows that this is difficult to
achieve.

To begin with, there is no correct sampling frame for
non-commercial accommodation (relatives, friends, second-
ary residence) or for seasonal furnished rentals.

In the case of hotels, campgrounds and family holiday
homes, the trials runs in summer 2004 revealed the
existence of catastrophic bias due to the intervention of hotel
owners in the survey selection process. The hoteliers did not
respect the random sample instructions and “essentially”
distributed the questionnaires to their best clients. This part
of the survey had to be set aside and replaced by the count
through the La Gravelle highway toll, which is regularly
subject to honest quality surveys by various organizations.

The questionnaires collected at the bakeries and at the
Brittany tourism sites during summer 2004 apparently
produced good qualitative and quantitative results regarding
the various modes of accommodation.

Food consumption would undoubtedly have been cap-
tured better by questionnaires at the exit of supermarkets,
but the problem there lies in the heterogeneity of these
establishments and in the cutthroat competition between
them; group C ... agrees to the surveys in its establishments
only if group / ... is excluded! In contrast, the collaboration
of local bakers in the survey was excellent.

Comments 3.2. By the very definition of the method used,
we operate formally within the context of sampling from
multiple frames. The problem has given rise to considerable
literature (Hartley (1962), Lund (1968) and Hartley (1974)
for a start). The GWSM applies to this problem by simply
considering each sampling frame as a stratum provided that
it is possible to identify for each unit sampled all of frames
of which it is a part. This approach provides a rigorous and
unique design-based solution to this problem. This comment
is worthy of its own article, but the authors know that it is
not worth the trouble: an idea that can be explained in ten
lines does not need an article or a book for it to survive.

4. Parameters of Interest

Application F, which links to any service ;j during the
reference period P in the three types of establishments of
the survey coverage tour i that used this service, is defined
as:

F :services — tour

J - F(j) =i

We will let U”, be the population of tours i of reference
period P. This population of interest U” is the image by
F of the aggregate of services during reference period P
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in the three types of establishments of the survey coverage.
Population U“ is the image by F~' of the aggregate of
tours during reference period P. For all i € U”, we define
R.(B) = card(F'(i)), the number of antecedents of i
during the survey period, that is, the number of services j
used by the given tourist household i .

The parameters of interest can be totals, sizes or ratios.
Let us assume, for example, that we are interested in the
estimate of a total relative to a variable y defined on

population U?*,
Y%= z Vs

ieU®

@.1)

A specific example of these totals is the size of U?,

written N® and defined by
N®=card(U") = > 1.
ieU*

For example, Y” can be the number of people who
practiced this activity, the total budget spent by the tourist
household in Brittany, the geographic origin of the tourist
households, or the number of days that the tourist household
spends in Brittany. It should be noted that for many
variables, the total Y” depends on the size of the tourist
household, that is, the number of people who make up this
group and on the length of the trip (only those days spent in
Brittany).

Now, we can write

YB:zyi:

4.2)

3
=

DID I IS

ieU® 1 aed deD jeC,
where
i . 1.
z, =—"—_ for jeF (i,
Tray 0O
where
— A,: the aggregate of bakeries in the survey

coverage identified by index a,
— A, : the 16 visit locations in the survey coverage
identified by index a,

— A;: the La Gravelle highway toll identified by
index a,
— D,: the aggregate of survey days, identified by

index d, in an establishment @, of 4, for the
variant of 1 to 3

— C, :the aggregate of services in an establishment g,
of 4, ofday d, of D, identified by index ;.

5. Unbiased Estimates of a Total

In the previous paragraph, we showed that the total of
interest is written as a total over the aggregate of the
services in the coverage. Let us assume that we have a
sample of respondent services j, to which we can link
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sampling weight 6,. These weights are assumed to be

unbiased because the sample of services follows the canons

of a multi-stage sample, each component sample being
unbiased.

To make the notations easier to read, we will not show
below all stages of the sample draw based on establishment
aq,. Let:

— s%: be the aggregate of tourist household i
corresponding to the aggregate of services sampled
during the survey period

— s, : be the aggregate of sampled establishments

— sp ¢ be the aggregate of days sampled in
establishment q,

— 5, : be the sub-sample of services j corresponding
to establishment day «,.

Since we have a set of sampling weights &, for the
respondent services, and if we know R (B), we can
estimate the unbiased total Y* by

?B:zwiy,'

ies®

(5.1
where

> YT s,

1 sy Sp, Sq

w.
' R, (B)

This gives us an estimate of the population of tourist
households. This formula is none other than that given by
the GWSM mentioned in section2. Note that
Ut =UroU* wU* = UL U", 077 =1 of service j
was used by tour i and then &, = 1/nf.

The variance can be estimated using the same principles
(see Lavallée (2002)). We will not go into the details here
because it is simply an application of general principles that
requires somewhat onerous calculations.

Furthermore, using auxiliary information in the form of
totals, whether in populations U or in population U”,
does not pose any particular problems for the point
estimation or the estimation of the variance (see Lavallée
(2002)).

Comments 5.1. The procedure we have just described for
sharing weights may be considered naive. In fact, we know
how to optimize the links matrix ® ,; as shown in Deville
and Lavallée (2006). The application of the Brittany survey
is described in Deville, Lavallée and Maumy (2005).

6. An example of a Specific Problem:
Visit Points in Open Country

As has already been mentioned, developing the survey of
tourism in Brittany required many complementary studies.
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We have already mentioned the optimization of weight
sharing. Using auxiliary data related to the various frames
and to the various stages of the sampling is another task. In
this section, we want to focus on estimating some of these
auxiliary data, in particular for visits to tourism sites in open
country.

In certain cases, we unfortunately do not know the total
number of people, denoted as 7%, coming to the site on a
given day. In effect, in aggregate 4,, we do not know all
the services (here the number of visits) of the population. It
is therefore not possible to obtain nfl directly and therefore
8, for je A4,. To overcome this problem, we estimate the
number of daily visitors in order to deduct fcfz =n, / T PA %

Our next step was to develop two l approaéhes to
estimating the number of daily visitors for sites accessible
by vehicles only (or almost!). The first approach is based on
a vehicle sampling system intended to estimate the number
of visitors to the site. The second approach uses a sampling
of visitors and is aimed at estimating the same quantity by
interviewing individuals who give the number of people
who travelled with him or her in the vehicle. These two
approaches are developed in sections 7 and 8 below.

7. Constructing an Estimator of the Number of
Visitors Using a Vehicle Sample

In this paragraph, we examine the approach where an
enumerator counts the number of occupants in vehicles that
break the line of an electronic eye, or an equivalent system
has been set up to count vehicles for which the total number,
written as 7,, is known with a virtually negligible
measurement error.

7.1 Definition and Variance of 7' : ?

The total number of vehicles equals

T,=> t.=>1
k=1, ...

leu,

(7.1)

where ¢_ represents the number of vehicles carrying «
persons and U, the vehicle universe.

Comments 7.1. To make the notations easier to read, we
will use here and until the end this article 7,, to denote 7;*.

The total number of people visiting the site equals

T,= ) xte= )1,
k=1, ...

keU,

(7.2)
where U, denotes the universe of people. We also have the

equation
T, = z v,
leU,

(7.3)

where v, is the number of people in vehicle /.
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As mentioned in the previous section, the total number of
people T, is unknown. Consequently, we must construct an
estimator of 7,. If we let 7, be 7 — estimator based on s,,,
a simple random sample of vehicles of size n and with a
probability of inclusion n /T,

7, = iZ:v, =T,

n les,

v :l{ZVZJ.
n les,

It is clear that 7, is an unbiased estimator of the total
number of people 7, and that v is an unbiased estimate of
the average number ¥ of people in a vehicle.

The variance of 7, is therefore equal to

(7.4)

assuming

Var[7,]=T; L Sy
n T,
1
=—T1; 5 -T, Sy,

n

(7.5)
where S, denotes the corrected variance of population U,,.

7.2 Constructing an Estimator of a Variable of
Interest in the Case of a Vehicle Sample

We want to estimate a variable of interest Y of
population U, written as

Y:zyk’

keU,

(7.6)

where y, is the variable of interest measured in the final
questionnaire. Let ¥ be m— estimator defined by

?:zwfyk’

kesp

(7.7)

where weight w’ is equal to 7,/m. Consequently,
estimator Y can be written

(7.8)

assuming

Subsequently, variables 7, » and ¥ will be assumed to be
independent. The assumption is realistic, because we use
two independent enumerators in the field.

7.2.1 CalculationAof the Variance of the
Estimator Y

According to Huygens’ theorem (1673), conditioning on
sample s,,, we get
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V, = Var[Y]
= Y Var[T,] + T} Var[¥]

+ Var[7,] Var[y]. (7.9)

In the present case, we liken the sample to a simple
random sampling without replacement. Equation (7.9) thus
becomes

(1
vV, = YZ(; TS, T, Sﬁj

SZ
+T7 {le ——Yj
m T,

2
+(1TV25§—TVS§j lsﬁ—i ,
n m T,
with 87 =1/(T, =1) 4y, (v, — ¥)?. Reorganizing the
terms gives

2 S}% 2 @2 1
V,=|7>-2r |2 s o
T, n

P

+ (13T, 53)S; -

1 7
+T7S; S, —+-L S S;
nm T,

~-Y’T, S} - T,8;.

The next step is to determine the allocation of the sample
sizes s, and s, that minimizes the variance of estimator ¥
for fixed population sizes 7, and 7, .

We must therefore minimize equation (7.10) in »n, m
subject to

C,n+Com=0C,

where C,, denotes the cost (in time for example) of the

questionnaires related to vehicles, C, the cost (in time) of

the questionnaires related to people, and C the total cost.
The Lagrangian equation can be written as

2
L(n, m, \)= {YZ —ij TVZS§l
T, n

P
1
- (1T, 59)S} —
m
T,
+T55§S§i+—VS§S§
nm T,
-Y’T,S; -T,S;

+A(C,n+Cpm—C). (7.11)

Taking the partial derivatives with respect to variables
n, m, A and setting them equal to zero gives
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oL — S 22( 1j
=, m,N)=| V-2 | 1282 ——
8n(nm ){ TJVV n?

P
2 o2 @2 1
+TVSVSY(— zj
mn
+A1C, =0,

S—L(n, m, \)=(T; —T, S})S; (—izj
m m

1
+ T} Sy Sﬁ(——zj
nm

+ACp =0,
oL

6_7»(’1’ m, \)=C, n+Cpm—C=0.

After calculations, we get a third-degree equation in n
that is written
AC; n’ — MC,Cn’

2
- C, T} 55{?2 —~ ijn

2
+ TVZS,f{C{YZ -~ %} Cpsﬁ] = 0.

S

P

This third-degree equation in » allows a real solution
that can be determined using numeric methods.
Using the same reasoning, we get a third-degree equation
in m
ACrm® — LC,Cm’
-G S}% (TP2 -1, S,f)m
+ S;(C(T7 +T, Sp)+C, T} S;) =0.

7.2.2 Simplified Case

To simplify the variance calculation of estimator Y, we
can make an approximation in equation (7.10). In effect, we
can assume that term 1/nm is negligible before terms
1/nand 1/m.

This then gives us the following transformation of
equation (7.10)

— S 1
vV, = {YZ —T—Yj 7S —
n

P

1
c@p-rsh st

T —
+ LSS -Y’T, S},
TP

-T,8;. (7.12)
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The next step is determining the allocation of the sample
sizes s, and s, that minimize the variance of estimator ¥
for fixed population sizes 7, and 7, .

We must therefore minimize equation (7.12) in n, m
subject to

C,n+Cpm=C.
The Lagrangian equation can be written as
2
Logngk):{fz—éijTﬁSﬁl
T, n

P

1
+ (T =T, 5)8 —

T, _
+-LS>S-Y°T, S}
TP

~-T,58;

+A(Cyn+ Com—=C). (7.13)

Taking the partial derivatives with respect to variables
n, m, A and setting them equal to zero gives

oL = S; 22(1

—m, m A=Y ——|T;S,| ——

6n( ) { T, P n?
+1C, =0,

L

L 0, m, 2= (13 -1, Sé)%[—%j

m m
+1C, =0,

gmgmkﬁ%?n+Cm—C=O

a}\‘ 4 P

After the calculations, we get
3 C
Mopt = 7 72 AN
C+JCC,Q&U}—E&)
4 P>V 2 o2 v2 2
Iy Sy (T, Y~ - SY)
C
m =

opt 2 Q2 72 23 )
CV4_JC¥(%7Q,SZ(EZY Sg)
T, 8Ty -1, S))

8. Constructing an Estimator of the Number of
Visitors Using a Sampling of Visitors

The previous method can be complicated and costly to
use at certain sites. A simpler data collection method
involves asking person & the number u, of passengers in
vehicle i that transported him or her. This number u, is
equal here to v, for vehicle / that transported person k.
This method has the further advantage of accurately
capturing the number of passengers within the meaning of
the survey (are babies counted?).
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8.1 Definition of iy »
Let us go back to the following equation

T, = ZV/,

leU,

where v, denotes the number of passengers in vehicle /.
Let us also recall

T,=> 1

leu,

The average number of passengers in a vehicle ¥ can be
expressed as

z 7 z Kf, z m,
leU, k=1, ... K

_ __ =l
St > Y MK
k=l, ... k=1, ...

leU),

V= (8.1)

where ¢ is the number of « — passenger vehicles and M
is the number of people who came in a « — passenger
vehicle.

We can use this last relation to obtain a new version of
T P

T,=T,V. (8.2)
Consequently, an estimator of 7, can be written as
T,=T,7, (8.3)

where the total number of vehicles 7,, is perfectly known.
Observing this expression, we see that, in order to know
estimator 7, all that is required is to determine the quantity
V. Let us therefore introduce the following estimator of 7

2y

P _xe ’
z mx/x
where m, is the number of people in the sample travelling
ina k passenger vehicle. Estimator J/ can also be written
as follows:
>

kesp

B z 1/u,

kesp

.

or as

e

m
e L—
z 1/u,

kesp

(8.4)

The last equation makes it possible to write the following
equation
-yl (85)
V m jes, Uy
This new_quantity represents the empirical average of
1/u, and ¥V is the harmonic average of u,. It is also
possible to calculate its variance, which is equal to
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(8.6)

Var é _(1_L St
vV m T,

8.2 Calculating the Variance of Estimator ]:‘ »
Without a Vehicle Sample

Now we have to calculate the variance of estimator
knowing (8.6). To this end, note that we can write

Accordingly, this gives

Var {é}
14

Lastly, we have

I
—
| —
~
[ ]
X
<
o
=
~
b
—

Var[/’]

n

~

N

X

<

o

=
1
<p| —
| I

or, with (8.6)
iy 4 1 1 2
Var[V] = V" x (— - —ij. 8.7

By definition, variance S} is equal to

2
1 ¥ 11
T, -1, Z\u, V)

Since quantity 7, is unknown, this relation can be
estimated by

2
Sl/u -

(8.8)

1

2
Zi_l
m—lkespuk 17

Given (8.7) and (8.9), we can easily determine the
variance of estimator ¥ and consequently, that of estimator
T, and lastly, that of the variable of interest Y.

(8.9)

Comments 8.1. Estimator 7, is biased and

asymptomatically unbiased.
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Comment 8.2. If variables 7:“ » and y are not independent
then we would have

Var[fpy} =Y’ Var[fp} + T} Var[y]

~
~

+ Var[TP 7} Var[y]

+ terms not linked to the

eventual non-independance

of the variables T » and .

9. Numeric Illustration

A mechanical counter at a site in open country gives
T, = 100 vehicles. We assume that 20% of the vehicles
have one person, 20% have two people, 20% have three
people, 20% have four people and 20% have five people.
This means there are 300 visitors to the site. The variance
Sy is equal to two disregarding finite population
corrections. The average number of passengers 7 is three.
In effect, we have:

40 60

X — + — X —

1 1
300 2 300 3 300

which gives V' = 3.

Let us now calculate an estimate of S, After
simplifications of (8.8) and assuming that 7, is large
enough compared to one, we have

2
, 1 1 1
51/u=T—Z—2—§-

PkeUI,uk
Thus, we get
Sf/u:L[2+1+%+l+£J—L2
30 32 5) 3
_L[60+30+20+15+12j_i
30 30 3’
_B7 13
302 37 307

Since we know S: ., we can calculate the variance of
estimator 7. This gives
- 1
Var[l'] = 3* x 3—72 X —.
30 m
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Lastly, we can calculate the variance of estimator 7,

Var[fp} T} Var[ﬁ]

37 1

X — X —.

10* x 3* -
30 m

I

The first approach gives a variance of estimator 7 » equal
to

. 1

Var[ T, | = 10* x 2 x =

n

Thus, for estimator 7, to have the same variance as
estimator 7, size m of sample s, must be equal to

m = 1.66n.

Our initial conclusion is that the second approach makes
field operations simpler and less costly in terms of personnel
because it only requires one enumerator. It is more accurate
than a count that does not involve direct contact to obtain
the composition of the tourist household. It requires only
one sample about one and a half times larger than the first
approach to produce the same accuracy, which is tolerable
given the resulting simplification of collection. In practice,
at all sites, the second approach will be the preferred
application.

Conclusion

This article presented a broad description of a new
method applicable to tourism statistics. It involves capturing
tourists based on the consumption of certain services on
which probabilistic samples are constructed. The weight
share method makes it possible to shift from statistical
accuracy of the services to the accuracy of the relevant
tourism statistical units: the tour, the trip, the tourist
household, the tourist or the tourist-night. However, the
method requires numerous adaptations and complements to
the weight share. We described one of these in detail, which
is the estimate of the number of visitors to a site in open
country. Two methods were tested. One, which was more
accurate in terms of sample size, requires a relatively
extensive organization and runs the risk of unacceptable
errors in measurement. At the price of collecting slightly
more data, the second method is preferred.

Other studies of this nature were conducted before and
during the time of the survey so that it is difficult to present
the full methodology in a single article.
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Combining Link-Tracing Sampling and Cluster Sampling to Estimate

the Size of Hidden Populations: A Bayesian-Assisted Approach

Martin H. Félix-Medina and Pedro E. Monjardin '

Abstract

Félix-Medina and Thompson (2004) proposed a variant of Link-tracing sampling in which it is assumed that a portion of the
population, not necessarily the major portion, is covered by a frame of disjoint sites where members of the population can be
found with high probabilities. A sample of sites is selected and the people in each of the selected sites are asked to nominate
other members of the population. They proposed maximum likelihood estimators of the population sizes which perform
acceptably provided that for each site the probability that a member is nominated by that site, called the nomination
probability, is not small. In this research we consider Félix-Medina and Thompson’s variant and propose three sets of
estimators of the population sizes derived under the Bayesian approach. Two of the sets of estimators were obtained using
improper prior distributions of the population sizes, and the other using Poisson prior distributions. However, we use the
Bayesian approach only to assist us in the construction of estimators, while inferences about the population sizes are made
under the frequentist approach. We propose two types of partly design-based variance estimators and confidence intervals.
One of them is obtained using a bootstrap and the other using the delta method along with the assumption of asymptotic
normality. The results of a simulation study indicate that (i) when the nomination probabilities are not small each of the
proposed sets of estimators performs well and very similarly to maximum likelihood estimators; (ii) when the nomination
probabilities are small the set of estimators derived using Poisson prior distributions still performs acceptably and does not
have the problems of bias that maximum likelihood estimators have, and (iii) the previous results do not depend on the size
of the fraction of the population covered by the frame.

Key Words: Bayesian approach; Capture-recapture; Design-based approach; Finite population; Hard-to-access

population; Maximum likelihood; Model-based approach; Sampling frame.

1. Introduction

Link-tracing sampling (LTS) has been found appropriate
for sampling hidden and hard-to-access human populations,
such as drug-user, homeless-person, or illegal-worker popu-
lations. In this sampling method, an initial sample of people
from the target population is selected, and the people in the
initial sample are asked to nominate other members of the
population. The nominated people who are not in the initial
sample are included in the sample and they might be asked
to nominate other persons. This process might continue until
a specified stopping rule is satisfied (for a review of LTS,
see Spreen 1992, and Thompson and Frank 2000).

Although LTS allows the sampler to make valid model-
based inferences about a number of population parameters,
in practical applications the assumptions about the initial
sample are difficult to satisfy. (See Snijders 1992, Frank and
Snijders 1994, and Heckathorn 2002). For instance, Frank
and Snijders (1994) developed a variant of LTS in which the
initial sample is a Bernoulli sample, that is, elements in the
initial sample are included independently and with equal
probabilities; however, in real studies the initial recruitment
is generally carried out by using records of people obtained
from health centers or police stations, and this induces a
selection bias known as institutional bias.

The difficulty in satisfying, in practical situations, the
assumptions about the initial sample motivated Félix-
Medina and Thompson (2004) to develop a variant of LTS
which does not require an initial Bernoulli sample. They
assume that a portion, not necessarily the major portion, of
the target population is covered by a sampling frame of
accessible sites where members of the population can be
found with high probability (for instance bars, hospitals,
blocks or parks). A simple random sample of sites is
selected, and the members that belong to each site are
identified. Finally, as in ordinary LTS, the people in each
site are asked to nominate other members of the population.

Those authors derived maximum likelihood estimators
(MLES) of the population sizes from probability models that
describe both the number of elements found in each site and
the probability that a member is nominated from a site,
which is called the nomination probability. They also
proposed model-based and partly design-based variance
estimators, that is, estimators based on both the design used
to select the initial sample and the assumed models.
Throughout this paper we will call this type of estimator a
“design-based-like” estimator. By a simulation study, the
authors showed that the MLEs of the population sizes and
their design-based-like variance estimators are robust to
deviations from the assumed model, but that the model-
based variance estimators are not robust. In addition, they

1. Martin H. Félix-Medina and Pedro E. Monjardin, Escuela de Ciencias Fisico-Matematicas, Universidad Autonoma de Sinaloa, Ciudad Universitaria,

Culiacan Sinaloa, México.
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found that the MLEs tend to seriously overestimate the
population size if the nomination probabilities are small.

As indicated by those authors, the problem of
overestimation that appears when the nomination
probabilities are small is caused by the small amount of
information contained in the sample, which is not enough to
obtain stable estimates of the nomination probabilities. They
suggest that a possible solution to this problem is to use the
Bayesian approach to construct estimators that incorporate
additional information about the population parameters.

In this work we use the Bayesian approach to assist us in
the construction of estimators of the population sizes, while
we make inferences under a frequentist approach. Thus, in
addition to deriving point estimators we construct confi-
dence intervals. For this purpose we use the strategy
proposed by Félix-Medina and Thompson (2004) to
construct confidence intervals based on the normal distri-
bution and using design-based-like variance estimators
obtained by the delta method. In addition, we construct
design-based-like bootstrap confidence intervals. We have
named this inferential approach “Bayesian-assisted”.

2. Sampling Design and Notation

The structure of the population and sampling design
considered in this paper are the same as those proposed by
Félix-Medina and Thompson (2004). A brief description of
them follows. Let U ={u,,...,u.} be a hidden human
population of unknown size 1. Let U, be a subset of U
formed by an unknown number 1, of people that can be
found in different accessible sites, such as bars, parks, or
blocks. Two assumptions about this sampling design are
that a sampling frame of N of those sites can be constructed,
and that the researcher has an operational rule which allows
him or her to determine whether or not a person belongs to a
site in the frame and, in the affirmative case, to locate that
site. Notice that the subset U, covered by the frame is not
assumed to be the major part of U and that, as in ordinary
cluster sampling, a person in the frame is assumed to belong
to only one site. Let 4, be the i—th site or cluster in the
frame and m, be the number of people who belong to
A,i=1,...,N; then t, =X m,. Finally, let U, =U -U,
be the portion of U not covered by the frame and let
T, =T -1, beitssize.

The sampling design is as follows. A sample S, =
{4,,..., A,} of n clusters is selected from the frame by
simple random sampling without replacement, and the m;,
persons who belong to each 4, € S, are identified. Note that
we have used the subscripts 1, ..., n to denote the clusters in
S,; however, this does not mean that the first » clusters in
the frame are necessarily the clusters in the sample. Next,
the people in the sampled cluster 4, are asked to nominate

Statistics Canada, Catalogue No. 12-001

members in U, but only nominees in U — 4, are considered.
This procedure is repeated for every cluster 4, €S,. As a
convention, we will say that a person is nominated by a
cluster if he or she is nominated by at least one member of
that cluster. Nominations from different clusters are carried
out independently, and different nomination strategies can
be used in different sites. For instance, in site A4, the m,

members, as a group, could carry out the nominations;
whereas in another site 4; each of the m; members could
make nominations separately. Finally, for each nominee the
researcher has to register the site or sites that nominated him
or her, and the section U, or U,, to which the nominee
belongs. Notice that this last piece of information could be
obtained from the person who made the nomination or, if
that is not possible, from an interview with the nominee.

The nomination of people by clusters will be indicated by
the matrices X, = [xfj”]nxrl and X, = [x,.(jz)]nxrz, where
xfj” =1 if person u; € U, — 4; is nominated by cluster 4;,
and xfjl) =0 if u; €4, or u, is not nominated by 4.
Similarly, xsz) =1 if person u; €U, is nominated by
cluster 4,, and xsz) =0 otherwise. As noted by Félix-
Medina and Thompson (2004), X, and X, are only known
up to permutations of their columns because the people are
not labelled. Therefore, inferences about t, and t, are
based on the set of counts y={y,}, where y,,
ocQ={l,...,n}, o+, indicates the number of people
in U who are nominated by every sampled cluster 4, with i
in the set ®, but not otherwise. For instance, if
o=1{4,7,8}, y, would be the number of people in U who
are nominated by only 4,, 4, and 4;.

3. Estimators of the Population Sizes Based on
Posterior Modes

Félix-Medina and Thompson noted the resemblance
between their sampling design and that of multiple capture-
recapture sampling (MCRS). This makes it possible to apply
to our case some of the Bayesian models that have been
proposed for analyzing MCRS. See Fienberg, Johnson and
Junker (1999) for a review of Bayesian analyses of MCRS.
In this work, we use a model considered by Castledine
(1981) for the prior distributions of the logits of the
nomination probabilities, along with some models for the
prior distributions of the population sizes.

As in Félix-Medina and Thompson (2004), we will
suppose that the sizes m,, ..., m, ofthe clusters 4,..., 4,
are realizations of independent Poisson random variables
M,,...,M, with mean A,. We will denote by p*’ the
probability that a person in U, — 4, is nominated by the site
4, € S,. The probabilities p*’ will be called nomination
probabilities. In addition, we will suppose that conditionally
on the sizes m, ..., m, of the clusters in S, on 1, and 1,,
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(k) » (k)

and on the p;"'’s, the variables x; are realizations of
independent Bernoulli random variables X; ) with means
pMi=1,...,nand k=1,2.

Fth-Medina and Thompson (2004) used the fact that
the joint conditional distribution of (M,,...,M,,
T, —X{M,), given that ¥ m, =1, is a multinomial
distribution with parameters t, and (1/N,...,1/N,
1-n/N), and applied a procedure used by Darroch (1958)
to show that the likelihood function of t,,t,,p, = {p"}/
and p, = {p*} is the product of the following factors:

1) = —(1/N)’"(1 n/ Ny

=m! T} m

- T,—m " (1-0)
f(y(1 0)|ms,rl,p1) ( 1, ! (- 0),1_[[ ;1)]2,
( T—m= rl) Hmi@ Yo :
[1 pl(l) ]rl m—z{"0
() (4,) DR
FO, Ly m,p))= H ate!T

i= 1( _W)'Hm;t@ Yo

(0)

[1 pl(l)]m m;—z;

f(y(Z) |mS,T2,p2)

T,! oy el
- )'H (2) 'H[p b ] >
2 [aE30%] 0’ :

where m_ = {m}';m =] m, is the observed value of the
random variable M that indicates the number of people in
Sy 0= 00y v = and  y") =
U . A €S,, are the sets of counts obtained from y,
that correspond to the counts of nominated people in
U -S,,U, and 4, €S,, respectively; z* = i L
yqu ), z" 0 _ =3 i y((u1 O and P =Y., y? are the
observed values of the random variables Z\”, Z"” and
Z» that indicate the numbers of distinct people in
Sy, U, — S, and U,, respectively, that are nominated by
Ai; and n= Zwi@ yt(ul 0)’ nh= Zwi@ y((BZ) and W, = Zwi@
y%) are the observed values of the random variables
R/, R, and W, that indicate the numbers of distinct people
in U, -8§,,U, and 4,, respectively, that are nominated by
at least one of the clusters in S,,.

We will now focus on the problem of defining the prior
distributions of 1, 7,, p, and p,. Inthe case of 1, and t,,
we will consider the following three models for the prior
distributions:

Poisson-Gamma Distributions

(T, A,) oc (NA,)® /1,! and (A, ) oc A e
T(t,)h,) c A% /1, ! and (A, ) oc A& e
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where q,, b, a,,b, are known constants, and (t;,,) and
(t,,,) are independent.

Jeffreys’ Distributions

n(t,)ocl/t,, where k=12,
independent random variables.

and 7, and 1, are

Uniform Distributions

n(t,)ocl, where k=1,2, and 1, and 1, are
independent random variables.

The prior Poisson distribution of t, defined in the first
case is motivated by the fact that t, =3 M, and that M,
is a Poisson variable with mean A,. Notice that this case
allows the researcher to use information about t, and T,
which is known prior to the observation of the sample. On
the other hand, the distributions defined in the other two
cases are not informative.

In the case of the nomination probabilities p;
following Castledine (1981), we will suppose that the

p*) ’s are exchangeable and will use his two-stage normal

(k) ’g

model for the logits (x(k) log[pfk) /(1— l.k))] of the
pl(k) s

a6, ~N(0,, 5}),
and 0, ~ N(u,,7;);i=1,...,n, k=12, (1)

where N(6,,c;) stands for the normal distribution with
mean 0, and variance o;;c;,p, and y; are known
constants; and the a'*)’s are conditionally independent
given 0,. Under the assumption of exhangeability the

(k) ’s are not independent, but information about any one
of them is used to obtain information about any other of the
a'®’s. Of course, if we wanted independent priors for the
(x(k )*s, we could obtain a one-stage normal model from (1)
by setting 6, =, and y; =0,k =1,2.

Finally, we will suppose that all the random vectors
(tp,A;) and (0,,0,), where o, = ((x(k) ey (nk)),
k =1, 2, are mutually independent.

Although we defined three types of prior distributions for
17, and t,, they can be treated in a unified way because the
prior marginal distributions of t, and t,, obtained from
the Poisson-Gamma distributions, are the Negative binomial

distributions:
T(t,+a)( N
) o lr' 1 {N+bj
1 1
(2)
and n(T,) o< I, Jr'aZ){ L j ,
T,! 1+5,

where T'() denotes the Gamma function. The Jeffreys’ and
Uniform distributions are limiting cases of (2) obtained by
making @, =b, =0,k=1,2, and a, =1, b, =0, k=1,2,
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respectively. Note that the Gamma distribution is not
defined for these values of @, and b,; however, for the
derivation of the estimators we can use these values in (2).

The posterior joint distribution of 1, T,, o}, and o, can
be expressed as

(T}, T,, 0, Oy |data)

(N-n)"T(t, +4a,)
(v, —m=-m)(N+b)" 4 [l + exp[&(l)]]rl_m'

i

1 1
explo’z{"]

ey ]
207 T(t,+a,)
X exp -
@" - p,)? (1, =)D, + 1)
__ 2y, |
ey
o epla®z?] | 20
T on XP 3)
i-1 [1 + exp[(xf.z)]] ’ @ - )’
__ 2v, |

where z" =z” +z"" is the observed value of the
random variable Z" =Z" +Z"” that indicates the
number of distinct people in U, either in S, or in
U,-S,, that are nominated by A;a'" is the arithmetic
mean of the o'*'; and v, =v; + o} /n, k=1,2.

Since we cannot compute the analytical integral of (3)
with respect to a” and a!”, we will not try to obtain
expressions for the posterior distributions of t, and t,, but,
as in Castledine (1981), we will use the mode of
n(ty, T,, Oy, O,|data) as an estimator of (t,7,,a,, o).
Using this strategy, we have that the proposed estimator is

the solution to the system of equations:

M+R +(1-n/N)[N(a,~1)/(N+b, )]f[ 1-p™M)
%1 — - i=1 ’
1-(1=n/N)INIAN +b)I[] - 5")

i=1

a» _go
- 2
(&, —M,)o;

~(1 1
A1) _ exp{(xﬁ )} _ Z,-() _
o l+expi@’y 1 - M,

1

(1)
_u;i:hwn; 4)
n(%l_Mi)vl
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. RyHl(a,- 1)/(1+b, )]1_[:':1 (1-p?) .

T, .
1-[/a+b)I[ T, =52
.o expia?y  z®P aP -a?
Y l+expia®y 7, 1,05
2(2) _
R e R R (5)
nt,v,

where a*) = 37 dﬁk) /n,k =1,2. From this, an estimator of
TiST=1+1,.

The forms of these estimators are basically adjustments
to the forms of the MLE’s proposed by Félix-Medina and
Thompson (2004) so that the proposed estimators incorpo-
rate the initial information about t, and (xf.k), i=1,...,m
k =1, 2. Also, as a referee has noted, the estimator ﬁfk) has
the form of the MLE of p*’ followed by shrinkage terms,
one of a'*) toward the arithmetic mean &), and another

of a® toward the prior mean , .

4. Confidence Intervals for the Population Sizes

As was indicated earlier, we will use the frequentist
approach to obtain design-based-like confidence intervals
that are robust to deviations from the assumed Poisson
distribution of the M,’s. We will consider bootstrap
intervals and Wald intervals based on a normal approxi-
mation (see Agresti 2002, page 13 and Evans, Kim and
O’Brien 1996 for the latter terminology).

4.1 Bootstrap Confidence Intervals

We will use a version of the bootstrap obtained by
combining the bootstrap variant for finite populations
proposed by Booth, Butler and Hall (1994) and the
parametric bootstrap variant (see Davison and Hinkley
1997, Chapter 2).

The steps of the procedure that we propose are the
following. (i) Construct an artificial population of N values
of m,’s by repeating N /n times, assuming that N/n is an
integer, the selected sample of n cluster sizes my, ..., m,. If
N =kn+r, where k and r are positive integers, construct
the population by repeating & times the selected sample of n
cluster sizes and add to this set of m;’s a simple random
sample without replacement (SRSWOR) of  values of m; ’s
selected from the observed sample of n cluster sizes. (ii)
Select a SRSWOR of size n from the population of the
m,’s. Let i,...,i, in be the indices of the m,’s in the
sample. (iii) For each i=i,...,i, draw samples of sizes
1,—m, and 1, from Bernoulli distributions with means

p" and p, respectively, where 1, 1,, p!” and p* are
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the estimates of t,,1,, p!" and p* computed from the
original observed sample. These samples simulate the
values of the sets {xfj”} and {xsz)} of indicator variables.
(iv) Compute estimates of 1,7, and T from the samples
drawn in steps (ii) and (iii) using the same procedure as that
used to compute the original estimates 1,7, and %. (V)
Obtain the bootstrap distributions of 1,7, and 1 by
repeating (i)—(iv) a large number B of times, and computing
the empirical distributions from the sets of B values of
1,7, and 1. (vi) Construct the 100(1-oa)% bootstrap
confidence intervals for t,,t, and T by using either the
basic or the percentile method (see Davison and Hinkley
1997, Chapter 5, for descriptions of these methods). In the
basic method the interval for © is [27 —1""*?, 21 -],
and in the percentile method it is [3‘*?, 17?7, where
@2 and £"*? are the lower and upper o./2 points of
the bootstrap distribution of the original estimate % of .

Note that this variant of the bootstrap does not use the
assumed Poisson distribution of the M, ’s, but it uses the
sampling design employed to select the initial sample of
clusters. Thus, we can consider that the resulting confidence
intervals are robust to deviations from the assumed
distribution of the M, ’s.

If bootstrap estimates of the variances of 17,7, and 1
were also desired, simple estimates could be obtained by
computing the sample variances of the sets of B values of
those estimators.

4.2 Wald Confidence Intervals

Though in this work we will not justify theoretically that
the proposed estimators of the population sizes are
asymptotically normally distributed, we will suppose that
the normal distribution is a reasonable approximation to the
distributions of the estimators. Thus, we will construct
100(1 — )% design-based-like Wald confidence intervals
for the population sizes, which have the form
%, +z, o\ V(i,), where z,__, is the upper o./2 point of
the standard normal distribution, and V(% ) 1s a design-
based-like estimator of the variance of 7, .

To construct this type of interval, we will firstly derive
design-based-like variance estimators by applying the same
strategy as that used by Félix-Medina and Thompson
(2004). In that strategy, the distribution of the cluster sizes is
not employed, but it is replaced by the distribution of the
sampling design used to select the initial sample S,. This is
carried out by means of the formula:

V(@) =V, [E (5 m )]+ E [V, (T m))], (6

where E.(7,/m ) and V.(%;/m,) denote the conditional
model-based expectation and variance operators, given that
M =m_ and E () and V,(-) denote the design-based
expectation and variance operators. Thus, the variance
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estimators are obtained by applying (6) to the first-order
Taylor’s approximations %, and %, of %, and 1%,
respectively, about the model-based expectations of ¢! =
M,,Z",R) and P =(Z?,R,), where Z“”
(Z“” 2N k=1,2.

Using the previously described strategy, and the fact that
ZWm_ ~bin(t, —m, p’) and R|m, ~bin(t, —m, 1
0)), where O, =T~ (1- p"), we have that an estimator
of V [E,(&]|m,)] is

N PO B
V,, =n(l-n/N)K> —12 (m, —im)’, (7
n—1,4
where i =n"'S{m; K=—-Q, /[A & -m—-r)]; 0, =11
(=5
n(pO
A 1 1
=y p: ) ~C+ —- ;
= BY T +a, -1 T, -m—p
BV =G -m)p (- p")+0i=1,.
and

(vl_l—ncs1 |: 12;1 (1)/3(1)]

l+n' (v —no;, )n_IZ:l_:1 1/31.(1)

®)

In addition, since COV(Z(I) RIm)) = (1, -m)Q,p", a
estimator of Ep[Vé(r1|mS)] is

A 2
n A (1)
pi'—D A A N
; { A0 lj (&, —m)p;" (1= p{”)

i

" (1, - m)Q1 (I- Q1)

- 2
(&, —-m—-n)

_2(%1_’”)@12": Al(l E1 p(l)
p &l B )"

T -m—

NG

i
where

b - n (v —non 12;1 p" /B
1+n"' (v = no,)n” lz,':ll/Bi(l)

Therefore, a design-based-like estimator of V(3,) is
V() =V, +V,.

In the case of 1,, since Z'”|m, ~bin(r2,pfz)) and
R)Jm, ~bin(t,,1-Q,), where Q, =[I", (1-p?), it
follows that E (r2|m ) does not depend on m_, and
consequently that \% [Eé (r m,)]~ 0. Therefore, since
Cov(Z'”, R)m ) =1,0,p, anestimator of V(%,) is
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Finally, since the no dependency of E. (t,)m,) on m,
implies that Cov(%?, %;)zo, it follows that a variance
estimator of % is V(%) = V(%,) + V(%,).

5. Monte Carlo Study

We considered four populations; a description of each
one is presented in Table 1. In the pair formed by
Populations I and II the frame covered about 45% of the
population, whereas in the pair formed by Populations III
and IV the frame covered about 70% of the population. The
populations of each pair were very similar, except that in
one of the populations of each pair the distribution of the
M’s was Poisson, whereas in the other it was Negative
Binomial. The nomination probabilities pfk), i=1,...,N,
k=1,2, were generated using the model pfk) =1-
exp(—B,m,), where the values of , were set so that the
following values of p*) = ¥V p}k )/ N were obtained. For
Populations I and II. (p", p¥)=(0.05,0.01) and
(", p*) =~ (0.01,0.002). For Populations III and IV:
(", p?) =(0.05,0.03) and (P, p*)=(0.01, 0.006).
The model employed to generate the p*’ s is a model used
in catch-effort methods (see Seber 1982, Chapter 7 for a de-
scription of those methods). As an associate editor has
noted, this model implies that the number of people nomi-
nated by cluster A4, has expectation (t,—m,)

(1—exp(—B,m;))+ 1, (1 —exp(—B,m;)), and consequently
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the number of nominated people is approximately
proportional to m,. Notice that the assumed exchangeable
model for p* does not entail such a relationship with ;.
Since the estimation of p* depends mainly on z\*’, the
number of people in U, nominated by the cluster 4,, we
expect the omission of this relationship not to affect the
efficiency of the estimator of pfk). Darroch (1958) has
shown, in the case of maximum likelihood estimation, that
no significant gain is obtained by assuming the catch-effort

model.

Table 1
Parameters of Simulated Populations

PopulationI  Population II Population III Population IV
N =250 N =250 N =250 N =250
M; Poisson M; Neg. Binomial M; Poisson M, Neg. Binomial

E(M,)=72 EM,)=172
V(M,)=72 V(M,)=24.48

E(M,)=7.2 E(M,)=172
V(M,)=72 V(M,)=2448

T, =1,811 1, =1,872 T, =1,811 1, =1,872
1,=2,200 1, =2,200 15, =700 1, =700
1=4,011 1=4,072 t=2,511 1=2,572
7,/1=045 1,/1=0.46 7, /1=072 1,/t=0.73

For Populations I and II the values of the parameters of
the prior distributions were o} =25, u, =-3.5,y; =25,
k=1,2,a =1, b=0.1, a, =784, b, =0.0028, so that
E(},)=10, V(,) =100, E(,) =2,800, and V(%,)=10°.
For Populations III and IV the values of the parameters were
6, =9, 1, =-35y,=9k=1,2,a,=1,b=0.1, a, =8,
b, =0.01, so that E(%,)=10, V(%,)=100, E(%,) =800,
and V(A,)=280,000. These values imply that the prior
distributions are well dispersed over relatively large
intervals that contain the parameters of interest.

The simulation experiment was carried out as follows.
From each population of N =250 values of m;’s, a
SRSWOR of n =25 values was selected. From cluster 4,
in the sample, the values of X ;.” and X ,;.2) were generated
by drawing samples of sizes T, —m;, and 1, from Bernoulli
distributions with means p!” and p'”, respectively. These
data were used to compute the following estimators of the
population sizes: the set of MLEs %,,%,, and T=7%, +7%,
proposed by Félix-Medina and Thompson (2004); and the
three sets of Bayesian estimators 1,15, and t“ =1 + 17,
a=U,J, P, obtained by using as prior distributions the
Uniform (U), Jeffreys’ (J), and Poisson (P) distribu-
tions, respectively. In addition, variance estimators and
confidence intervals were also computed. Bootstrap
intervals were computed by the basic method, with the
exception of the intervals based on the estimators %/, &5
and ", which were computed by the percentile method.
All bootstrap estimators were obtained by using 2,000
bootstrap samples. Finally, the performance of the point and
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interval estimators was evaluated by using » =10,000 trials
of the previous procedure.

The performance of an estimator 1, say, was evaluated
by its relative bias and the square root of its relative mean
square error, defined as r—bias=3%] (%, —1)/(r1) and
Jr—mse = \/Zf(%,. —1)’ /(rt*), where %, was the value
of % obtained in the i—th trial. The performance of a
variance estimator was also evaluated by its relative bias
and the square root of its relative mean square error, which
were similarly defined to those of an estimator of the
population size, but using the empirically determined
variance instead of the real wvariance. Finally, the
performance of the 95% confidence intervals was evaluated
by their coverage probabilities and their average lengths.

6. Results and Discussion

Because of restrictions of space, in Tables 2 to 4 we
present only a selection of the results of the numerical study.
However, the next comments refer to the complete set of
results.

Despite the limitations of the simulation study, we can
conclude that the main factor that affects the performance of
the estimators and confidence intervals is the magnitude of
the p* ’s. When they are large and regardless of the
distribution of the M, ’s and the size of the fraction 1, /7
covered by the frame, every one of the estimators of the t’s
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are small and in spite of all the other factors, only the
Bayesian estimators i, perform acceptably. It is worth
noting that when the pfk) ’s are small, the Bayesian
estimators %, and %, perform better than the MLE’s %,;
however, the performance of 1. and % is not good
enough to make reliable inferences.

Bootstrap confidence intervals for 1, based on %/ did
not perform as well as Wald intervals when the p*’ ’s were
small or the M,’s were not Poisson distributed. The
explanation of this result and the development of better
bootstrap intervals are topics that require further research.

Finally, the best performance of the set of estimators 1|
is a consequence of the greater amount of information used
by them. Though we used relatively flat prior distributions
for the t, ’s, the information supplied by them was enough
to avoid the problems of bias and high variability observed
in the other estimators. We carried out some additional
simulation trials, and the results (which are not reported in
the tables) indicate that, as long as the prior distributions are
kept relatively flat, the estimates are not affected by the
values of the parameters of the prior distributions.
Obviously, misleading initial information combined with
small values of the p’”’s will affect the estimates. An
example of this is a prior distribution for t, with a
probability density function highly concentrated about a
value very far from the true value of t,. However, we think
that if the researcher has correct information, even if it is

vague, it would be worthwhile using the set of estimators
AP s

and design-based-like confidence intervals (Wald or T, ’s.
bootstrap) perform satisfactorily. However, when the p*’ s
Table 2
Relative Biases and Square Roots of Relative Mean Square Errors of the Estimators of the Population Sizes
Population I Population I Population IIT Population IV
2 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01
D, 0.01 0.002 0.01 0.002 0.03 0.006 0.03 0.006
B re? B re? B re? B re? B re? B re? B re? B re?
x, -000 002 -000 006 -0.00 002 -0.01 009 -000 0.02 -000 0.06 —000 002 -001 0.09
1, 0.01 0.12 024 0.78° 0.01 0.13 021° 076 000 006 0.17° 067° 000 006 016 0.63°
T 0.01  0.07 0.13* 043 001 0.07 012 042° 000 002 005" 019° —0.00 002 004 0.18°
%ﬁ/ -0.00 0.02 -0.00 006 -000 002 -0.01 009 -0.00 0.02 -000 0.06 -0.00 0.02 -0.01 0.09
%12/ 0.02 0.13 0.14° 0.65 0.01 0.12 0.14* 0.65 000 006 0.13 065 0.00 006 0.13 0.71
o 0.01  0.07 0.08" 036" 0.01 0.07 0.08* 036 000 002 003 019 -0.00 002 0.03 020
%‘1/ -0.00 0.02 -0.01 006 -000 002 -001 009 -0.00 0.02 -001 0.06 -0.00 0.02 -0.01 0.09
%‘2/ -0.00 0.12 -0.14 048 -000 0.12 -0.14 048 -0.00 0.06 -0.04 037 -0.00 0.06 -0.04 035
% -000 007 -008 027 -000 007 -008 027 -0.00 002 -002 011 —-000 002 -002 0.12
%f -0.00 0.02 -0.01 006 -000 002 -001 009 -0.00 0.02 -001 0.06 -0.00 0.02 -0.01 0.09
%5 002 0.12 007 020 002 011 007 020 0.00 006 000 018 000 006 0.01 018
&7 001 0.06 0.04 011 001 006 003 0.1 000 002 -000 007 -000 0.02 -0.00 0.08
Notes: P, relative bias; re?, relative mean square error; T;,%T, and T, MLEs. Superscripts U, J, and P of estimators 1,7, and 1

indicate Bayesian estimators based on the prior Uniform, Jeffrey’s and two stage Poisson-Gamma distributions, respectively. Results
based on 10* trials. Superscripts a, b and ¢ indicate results obtained by ignoring 8%, 15% and 21% of the trials. Ignored trials were
those in which the corresponding estimator of t, was negative or greater than 10%
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Coverage Probabilities and Averarl;:inZIfgths of 95% Confidence Intervals
Population I Population I
P, =0.05, p, =0.01 p, =0.01, p, =0.002 P, =0.05, p, =0.01 p, =0.01, p, =0.002
Bootstrap Wald Bootstrap Wald Bootstrap Wald Bootstrap Wald
cp 7 cp 7 cp 7 cp 7 cp 7 cp 7 cp 7 cp 7

%f” NC NC 095 129 NC NC 094 398 NC NC 093 127 NC NC 076 400
%]2” NC NC 095 1,044 NC NC 0.90* 8,181° NC NC 095 1,029 NC NC 0.90* 7,764"
M NC NC 095 1,052 NC NC 0.90* 8,200 NC NC 095 1,037 NC NC 0.90* 7,784°
%{3 0.95 130 0.95 129  0.92 399 094 404 097 147 0.95 137 0.96 642 092 657
%f 094 1,110 095 1,044 074 L, 090° 8181 094 1,129 095 1,029 0.74 L, 0907 7,764"
P 094 1,118 095 1,052 0.75 L, 090" 8201 095 1,139 095 1,038 0.78 L, 090" 7.819°
ﬁ/ 0.94 131 095 129 0.92 412 094 403 097 150  0.94 137 097 668  0.93 657
%12/ 094 1,116 095 1,049 072 L, 089 6,887 094 1,128 095 1,028 0.73 L, 089 6,738"
o 094 1,124 095 1,057 0.73 L, 090" 6908 095 1,139 095 1,038 0.77 L, 090" 6,796"
%‘1/ 0.95 131 095 128 093 412 094 402 0.96 151 0.95 137 0.96 666  0.92 652
%‘2/ 093 1,043 094 998  0.58 3,122 071 3,142 093 1,057 093 985  0.60 3,074 0.72 3,095
o 093 1,052 094 1,007 060 3,199 072 3,178 094 1,072 093 995  0.68 3276 0.73 3,188
%f 0.94 131 095 129 091 411 094 402 0.89 151 0.95 137 0.86 666  0.93 654
%f 0.97 997  0.95 957 1.00 1,506 092 1,573 097 1,000 095 943 1.00 1,510 092 1,577
ol 097 1,006 0.95 966 1.00 1,575 094 1,624 097 1,011 095 953  1.00 1,679 095 1,710
Notes:  cp, coverage probability; 7, average length. Superscripts M and D of the MLEs 1,7, and T indicate model-based and design-based
confidence intervals, respectively. Bootstrap confidence intervals computed on 2,000 bootstrap samples. NC, not computed. Results

based on 10* trials. Superscript ¢ indicate results obtained by ignoring 8% of the trials. Ignored trials were those in which the
corresponding estimator of T, was negative or greater than 10*. L, and L, indicate lengths greater than 10° and 10°, respectively.

Relative Biases and Square Roots of Relz;l;::/l::liA“ean Square Errors of Variance Estimators
Population I Population I
P, =0.05, p, =0.01 p, =0.01, p, =0.002 P, =0.05, p, =0.01 p, =0.01, p, =0.002
Bootstrap Taylor Bootstrap Taylor Bootstrap Taylor Bootstrap Taylor
B re? B re? B re? B re? B re? B re? B re? B re?

%f"l NC NC 001 0.17 NC NC -0.04 0.08 NC NC -020 031 NC NC -0.64 0.65
%]2\4 NC NC 001 049 NC NC 1.9 53¢ NC NC -0.02 0.64 NC NC 1.8 547
M NC NC 001 048 NC NC 1.9 53¢ NC NC -0.02 0.64 NC NC L.7 5.3¢
%ID 003 019 o001 017 -002 0.17 -000 0.17 0.08 046 -0.07 028 -005 040 -0.01 037
%ZD 0.16 062 001 049 L, L, 1.9 53 020 110 -0.02 0.64 L, L, L.7 53¢
P 0.15 061 001 048 L, L, 1.9 53 020 110 -0.02 0.64 L, L, L.7 53¢
ﬁ/ 002 020 -001 017 003 0.19 -001 017 0.14 051 -006 028 005 037 001 037
%12/ 013 062 -0.01 049 024 1.20 L7 46° 022 092 -000 062 030 140 L.6" 6.4°
Y 013 061 -0.01 048 024 1.20 L6 45 023 091 001 061 030 140 L.6" 6.2°
%‘1/ 006 021 002 017 005 0.19 -001 017 012 050 -0.08 028 000 035 -0.04 036
%‘2/ 0.07 051 -003 044 -025 0.66 -0.11 140 013 069 -003 055 -025 074 -0.13 1.50
o 006 050 -0.03 043 -025 0.66 -012 140 012 068 -0.03 053 -024 072 -0.15 140
%f) 003 020 -001 017 003 0.18 -002 017 016 052 -005 028 005 037 001 037
%5 0.07 034 -002 035 -007 0.16 -003 0.12 010 042 -001 041 -006 0.17 -0.01 0.16

ol 006 034 -002 034 -005 0.14 -002 011 010 042 -001 041 -003 0.5 0.01 0.16
2

Notes:  rp, relative bias; re”, relative mean square error. Superscripts M and D of the MLEs 7;,%, and 7 indicate model-based and design-
based variance estimators, respectively. Bootstrap confidence intervals computed on 2,000 bootstrap samples. NC, not computed. Results
based on 10* trials. Superscript ¢ indicate results obtained by ignoring 8% of the trials. Ignored trials were those in which the
corresponding estimator of T, was negative or greater than 10*. L, and L, indicate values greater than 10% and 10*, respectively.
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On Sample Survey Designs for Consumer Price Indexes

Alan H. Dorfman, Janice Lent, Sylvia G. Leaver and Edward Wegman '

Abstract

Survey sampling to estimate a Consumer Price Index (CPI) is quite complicated, generally requiring a combination of data
from at least two surveys: one giving prices, one giving expenditure weights. Fundamentally different approaches to the
sampling process—probability sampling and purposive sampling—have each been strongly advocated and are used by
different countries in the collection of price data. By constructing a small “world” of purchases and prices from scanner data
on cereal and then simulating various sampling and estimation techniques, we compare the results of two design and
estimation approaches: the probability approach of the United States and the purposive approach of the United Kingdom.
For the same amount of information collected, but given the use of different estimators, the United Kingdom’s methods
appear to offer better overall accuracy in targeting a population superlative consumer price index.

Key Words: Elementary index; Probability proportional to size sampling; Purposive sampling; Scanner data;

Superlative index.

1. Background

From start to finish, survey sampling for the sake of a
Consumer Price Index (CPI) must rank among the most
complicated of sampling enterprises. The population target
is hard to pin down, the appropriate domain of items
debated, the definitions of the raw ingredients — prices,
quantities, items —ambiguous and subject to question. The
ultimate estimator - the estimator of the all-items CPI- relies
on data from at least two surveys, one giving prices, and one
giving “weights.” Below the level of “composite items” (or
“item strata”) — groups of items supposed homogeneous in
their price movements — there is typically no cost effective
way to keep sampling weights up to date. Debate therefore
goes on about the proper choice among various simple
alternative estimators of price change for item categories,
the “elementary aggregate indexes.” The appropriate meth-
od of aggregating these price changes, using the weights, is
subject also to debate.

There are two broad approaches to the sampling by
which prices are collected: probability sampling and
judgment sampling. The most commonly accepted approach
to survey sampling in general requires injecting an element
of randomness into the survey process and relying on this
randomness to make inference about population charac-
teristics of interest — probability or “design-based” sam-
pling; see, e.g., Sirndal, Swensson and Wretman (1992).
This approach was not always taken for granted. Early in the
20™ century, “purposive” or “representative” sampling was
considered a viable, and possibly better, option. More
recently, the prediction-based school of Royall has chal-
lenged design-based assumptions; see e.g., Valliant,
Dorfman and Royall (2000).

In the U.S,, all CPI-related surveys are carried out using
complex probability sampling techniques. Around the
world, most CPI’s are constructed from judgment samples,
in which experts on the different item strata choose broader
or narrower classes of items for which field representatives
collect prices. The fundamental reason for this is the diffi-
culty of getting all the data one needs on the plethora of
items sold, and the places where they are sold, to make
probability sampling feasible.

The interesting fact is that there has been very little
assessment of the relative accuracy of the different ap-
proaches to sampling. Indeed it has not been clear that it is
feasible to make such assessments. The underlying popu-
lation price index, for even the smallest of countries,
involves so many transactions on so many items in so many
places as to be inaccessible. Moreover, the population of
items on the market is in a constant state of flux, com-
plicating the application of traditional population index
formulas. How then can one judge the relative closeness to
“truth” of different sample-based estimates? Furthermore,
in most cases, not even sample information is available for a
key ingredient of the population index-namely the quantities
of items sold — so even artificially constructing a population
for test purposes from sample data has not been feasible.

The relatively recent availability of scanner data, in the
U.S. and elsewhere, presents an unprecedented opportunity
for testing sampling approaches and estimators. These data
include prices and quantities, typically on a weekly basis, of
all the items sold in a given category within a large sample
of outlets having scanner devices. Such data may be used to
construct realistic populations of transactions for which the
true price index is known. We can then use various methods
to sample from this population, construct different index

1. Alan H. Dorfman, Office of Survey Methods Research, and Sylvia G. Leaver, Office of Prices and Living Conditions, U.S. Bureau of Labor Statistics, 2
Massachusetts Ave NE, Washington, D.C., U.S.A., 20212; Janice Lent, U.S. Bureau of Transportation Statistics, 400 7" Street, SW, Washington, D.C.,
U.S.A., 20590; Edward Wegman, Center for Computational Statistics, George Mason University, Fairfax, VA, U.S.A., 22030.
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estimates of interest, and compare the results to the known
population parameters. One such study, described by
de Haan, Opperdoes and Schut (1999), seems to show that
“cutoff sampling,” the sampling of the few largest (in terms
of revenue generated) items in the population, outperforms
two important design-based approaches: simple random
sampling (s7s), and probability proportional to size sampling
( pps) (where the size measure is, again, revenue).

One difficulty in any study making such comparisons is
the task of maintaining a “level playing field” If one
sampling method, for example, makes use of (population)
information that might not actually be available in practice,
while another does not, the comparison of methods is
undermined. Similarly, if one method provides only one
sample or very few samples, and another provides thou-
sands, special precautions are needed in comparing the two;
indeed, such a comparison might require serious qual-
ifications. Given the complexity of the sampling and esti-
mation methods used in price index computation, it is not
surprising that these and many other difficulties complicate
experiments designed to compare various methods.

Ideally, to compare the approaches, for example, of two
countries, we would mimic the whole complex sampling
and estimation process of each and evaluate its costs. Both
processes would be allowed the same budget, and we would
be able, by some predetermined and equitable measure, to
evaluate each estimate’s proximity to a known target index.

This paper comprises two studies, a large primary study,
and a smaller secondary, follow-up study.

The main study is described in Sections 2 through 4.
Section 2 describes the construction of the target population.
Section 3 describes the “US” and “UK” methodologies and
outlines the simulation details. No attempt is made to assess
relative costs (thus falling short of the ideal), but the
competing approaches are made as equal as possible in
terms of the information they use. Results, which favor the
UK approach, are given in Section 4.

The follow-up study, in Section 5, attempts to disen-
tangle the effects of different components of the two
approaches, in particular sampling method and elementary
index formula. Section 6 gives a final summary and
discussion.

Note on the target indexes. The price index literature
contains myriad formulas for calculating price change
between one period and another. Different indexes are
compatible with different assumptions regarding the “aver-
age” consumer’s buying behavior in response to price
change. The “fixed market basket” indexes, the commonly
employed Laspeyres and less used Paasche formulas, are
compatible with the assumption that consumers continue to
purchase the same items in the same quantities regardless of
changes in relative prices. The Laspeyres index projects the
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period 1 (“base period”) quantities forward to period 2
(“current period”), while the Paasche applies the period 2
quantities to period 1. The geometric index (or “Jevons” or
“geomean’), usually weighted with base period expenditure
shares, assumes that consumers adjust the quantities they
purchase in such a way that the expenditure share for each
item remains constant across time. The “superlative” Fisher,
Tornqvist, and Walsh index formulas, which rely on
quantity (or expenditure share) information for both periods,
do not require these assumptions. Formulas for these
indexes, with a superscript y representing the base period,
v +1, the current period, and i the item purchased, for the
indexes are given in Appendix A.

The debate on the all items target index usually comes
down to choosing between the Laspeyres and one of the
superlative indexes. Most countries select a Laspeyres target
index, but a strong case (Diewert 1997) can be made that the
proper target is a superlative index (usually the Fisher or
Tornqvist), even if the formula for the estimator does not
resemble one of the superlative population index formulas.
Because of the form of the US elementary aggregates-—
geometric mean — and the fact that previous research
(Dorfman, Leaver and Lent 1999) indicated that the lowest
level of estimation can have a major impact, the weighted
geomean will be included among the potential targets.
Targets for a given domain are calculated based on prices
and quantities of all items in the domain following the
formulas in Appendix A (a single-stage aggregation of
prices and quantities).

Note: These formulas are deceptively simple, requiring
the notation of section 3 for their full development. Thus, in
a formula such as that for the Fisher index F' (which we will
take as our target in the main study of sections 2 — 4) “”
represents an item i belonging to a small class ¢ (an “ELI”
or “representative item” — see section 3), where c is itself a
subset of wider classes; further, the item i is sold in a
particular outlet j, classified as part of a particular chain £,
and located in a particular sampled geographic area, the
primary sampling unit (psu) /. Thus, the expression for a
sum Y, inthe case of the overall population index, is really
shorthand for Y7, X5 Xjcw s Zea Thee Teen Lie(o
a similar remark holds for [];. In short, these are sums and
products over all items in the population. Contractions of
this full expansion will give the population indexes for the
different classes C, efc.

2. The Population for the Primary Study
The data source for the present study is a scanner data set

for breakfast cereal for the years 1995 through 2000 in three
separate but contiguous sections of a single large
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metropolitan area. The data set was purchased from the A.C.
Nielsen Corporation by the U.S. Bureau of Labor Statistics
for the purpose of determining the feasibility of incor-
porating scanner data into the U.S. CPI; see Richardson
(2000).

From these data, artificial “populations” were drawn by
the method described below. Thus the study encompasses
an apparently narrow world, that of cereal, within a fairly
restricted geographic domain. Even this restricted world,
however, allows for rather discrepant price trends over the
six years. Thus, although we will not be able to generalize,
in any simple fashion, to global price indexes encompassing
a wide heterogeneity of products, we may be able to derive
important clues on the effects of different sampling methods
and the behavior of particular estimators.

The six years’ worth of data available provided the
opportunity for establishing fairly long-term price trends. In
order to keep the data manageable and avoid the compli-
cations of seasonality, we limited ourselves to February
data. For February of year y, for each item (ie., each
particular combination k£ of brand, type, size) in a particular
outlet, four weeks ¢ of price and quantity data were
combined into a single month’s price and quantity, by using
the sum of quantities ¢}’ =¥, ps. , ¢, sold during the
month as the quantity, and the unit value p,™>” =
Yicreny Ak P! Zicreny 9 as the price. Unit values com-
puted over short periods of time (e.g., a month) give perhaps
the most meaningful sense of the “average” price for a
particular item. The use of unit values smoothes the data and
reduces it to more manageable proportions; for a discussion
of circumstances under which use of unit values is appro-
priate or not appropriate see Balk (1999).

For the purposes of the study, the population of breakfast
cereals was divided into four groups:

1. Hot Cereals (H)

2. “Sugary” cereals (S)

3. “Fruity” cereals (F)

4. “Plain” cereals (P), i.e., cold cereals not falling
into categories (2) and (3).

For each group, for each successive pair of years, super-
lative and non-superlative indexes were calculated, using
item-outlet combinations available in both years. In practice,
there is generally a problem with getting perfect match-ups
from period to period, and finding means to deal with this
by finding substitutes for original products or by other
means is important; this study bypasses this particular
problem.

Long range indexes (95 to ’00) were calculated both
directly and by chaining annual indexes. Additionally,
indexes were calculated on the “core” items, meaning those
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available in all six years. On a year-to-year basis, the core
items represented between 53% and 61% of a given year’s
items available for year-to-year comparison; core expen-
diture was from 83% to 91% of the total expenditure on all
(core and non-core) items. There were 326 core items, and a
total of 848 distinct items over the course of 95 to *00.

Values of year-to-year population indexes are repre-
sented in Figures 1 through 5. Figure 1 gives the index
I**" values for Sugary cereals based on all items sold in
stores in both y and y+1, for (February of) y=
1995, ..., 1999 (the “all items”). Values for five indexes
are shown, including the Paasche P and, as being of
academic interest, a unit value index U, the ratio of
quantity weighted mean prices, averaged over all item types
and outlets. Figure 2 gives results of the same calculations,
but limited to “core” items. Figures 1 and 2 are almost
identical, and the resemblance between indexes calculated
using all items and those using just the core items held for
the other cereal categories as well. Figures 3 through 5 give
the results for the core-based indexes for Hot, Fruity, and
Plain cereals. For any given index, the figures indicate
serious differences across cereal categories. The price trends
of the four major groups are quite different: A increases, S
decreases sharply, F' decreases modestly, and P increases
modestly.

Table 1 gives long range ("95 - *00) direct indexes and
chained indexes for “all items” and “core items.” (“All
items” for constructing an index between two given years,
are all those item/outlets with positive quantities sold, both
years). Again, there is very little difference between the
values for “core items” and “all items,” and sharp differ-
ences from one cereal category to another. The chained and
direct results are close for the superlative indexes but tend to
be discrepant for the geomean, Laspeyres, and Paasche. The
chained and direct unit value indexes are close and in fact
the latter would be identical to the chained based on the core
items, except that, for convenience, the year to year indexes
were based only on item-outlet combinations available for
both years.

Except for some oscillation of position of the unit value
index, we observe a clear ordering of index values by
formula, the same across categories, which may be summa-
rized as follows: (1) The superlative indexes differ relatively
little from each other, a noteworthy result given the amount
of variability in the item-outlet price relatives and quantities,
due to “sales.” (2) The traditional non-superlative indexes
differ wildly from each other and the superlatives, with the
geomean, weighted by first period expenditures, running
much higher than the superlatives, the Laspeyres still
higher, and the Paasche (not surprisingly) much lower.
These results suggest that, in Cereal World, not only
quantity, but expenditure share, tends to drop in period 2 on
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an item having a sharp increase in price in that period. (3)
The unit value index is low as well, but, except in the case
of Hot cereals, is better than the tradional non-superlative
indexes in approximating the superlatives. (4) In the light of
later developments in this paper, and at the suggestion of a
referee, two non-quantity based indexes are included in this
table (although not in the figures): the dutot index, which is

a simple ratio of average prices (RA) — see Appendix A, and
an unweighted (that is, constant weighted) geomean; both
are usually reserved for computing indexes at the elementa-
ry level. The results are surprising: in approximating the
superlatives, they do as well as or better than the traditional,
quantity based non-superlatives, about on a par with the unit
value index.

1995 1996 1997

1998 1999 2000

Year

‘ —€— Geomean —M— Paasche —A— Tornqvist —<— Fisher —X— Laspeyres —@— Unit Value‘

Figure 1. Annually Chained Population Target Indexes for All Sugary Cereals February-to-February Indexes,

1995 = 100.
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Figure 2. Annually Chained Population Target Indexes for Core Sugary Cereals February-to-February Indexes,

1995 = 100.
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Figure 3. Annually Chained Population Target Indexes for Core Hot Cereals February-to-February Indexes,

1995 = 100.

Statistics Canada, Catalogue No. 12-001



Survey Methodology, December 2006

130 // —*
1o A
E -

90 —8 —e

1995 1996 1997 1998

Year

1999

‘ —€— Geomean —M—Paasche —&— Toérnqvist —<—Fisher —K—Laspeyres —@®—Unit Value ‘

2000

Figure 4. Annually Chained Population Target Indexes for Core Fruity Cereals February-to-February Indexes,
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Figure 5. Annually Chained Population Target Indexes for Core Plain Cereals February-to-February Indexes,

1995 =100.
Table 1
Direct and Chained Indexes for *95 —*00
Geometric
Mean Paasche Tornqvist Fisher Laspeyres  Unit Value
Hot Direct 1.1176 1.0253 1.0847 1.0891 1.1569 0.9576
Chained, All Items 1.1801 0.9874 1.1159 1.1216 1.2742 0.9453
Chained, Core Items 1.1804 0.9865 1.1160 1.1221 1.2763 0.9759
Sugary Direct 0.8855 0.6739 0.7913 0.7898 0.9257 0.7417
Chained All Items 1.3341 0.3825 0.7925 0.7771 1.5786 0.7506
Chained, Core Items 1.3591 0.3661 0.7849 0.7704 1.6212 0.7585
Fruity  Direct 0.9716 0.8676 0.9319 0.9296 0.9960 0.8932
Chained All Items 1.2202 0.6849 0.9661 0.9696 1.3728 0.9308
Chained, Core Items 1.1808 0.6557 0.9320 0.9328 1.3269 0.8950
Plain Direct 1.0811 0.8641 1.0045 0.9816 1.1150 0.8554
Chained All Items 1.3969 0.6330 1.0333 1.0053 1.5965 0.8935
Chained, Core Items 1.4234 0.6175 1.0353 1.0054 1.6370 0.8879
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Table 1
Direct and Chained Indexes for 95 —’00
Geo- Geo-

metric Las- Unit metric

Mean*  Paasche Tornqvist  Fisher peyres Value RA Mean+

Hot Direct 1.1176 1.0253 1.0847 1.0891 1.1569 0.9576 1.1192 1.0949
Chained, All Items 1.1801 0.9874 1.1159 1.1216 1.2742 0.9453 1.1395 1.1128
Chained, Core Items 1.1804 0.9865 1.1160 1.1221 1.2763 0.9759 1.1374 1.1151

Sugary Direct 0.8855 0.6739 0.7913 0.7898 0.9257 0.7417 0.8817 0.8702
Chained All Items 1.3341 0.3825 0.7925 0.7771 1.5786 0.7506 0.9124 0.9010
Chained, Core Items 1.3591 0.3661 0.7849 0.7704 1.6212 0.7585 0.8984 0.8894

Fruity Direct 0.9716 0.8676 0.9319 0.9296 0.9960 0.8932 0.9815 0.9726
Chained All Items 1.2202 0.6849 0.9661 0.9696 1.3728 0.9308 1.0263 1.0165
Chained, Core Items 1.1808 0.6557 0.9320 0.9328 1.3269 0.8950 0.9935 0.9820

Plain  Direct 1.0811 0.8641 1.0045 0.9816 1.1150 0.8554 1.0620 1.0511
Chained All Items 1.3969 0.6330 1.0333 1.0053 1.5965 0.8935 1.0642 1.0572
Chained, Core Items 1.4234 0.6175 1.0353 1.0054 1.6370 0.8879 1.0653 1.0571

* Weighted by base period expenditure.
+ Unweighted.

Based on this preliminary investigation, and for relative
simplicity, we restricted our further investigations to the
core data. To investigate the relative accuracy of probability
and purposive sampling, as applied in practice to construct
CPI’s, we endeavored to approximate the sample designs
used by the United States and the United Kingdom-
representing probability based and judgment sampling
respectively. In both cases we were fortunate to have
detailed information on the complex survey processes, in the
form of manuals, and contacts within the respective
agencies. The basic idea was to repeatedly sample from a
given population, for example the core transactions in the
years ’95 and *96. Each “run” was a composite of sampling
and estimation activities carried out according to the
methods of one country or the other. It should be borne in
mind that our interest was in comparing the merits of
methodologies, not in measuring the success of the US and
UK in estimating their target population parameters.

The four “natural” population groups described above,
referred to as “Major Groups” in the UK and “Expenditure
Classes” in the US, were divided into finer sub-groups. In
practice, sub-groups would be defined in terms of types of
commodity. One justification for this, besides any intrinsic
interest there might be in those commodities themselves, is
that sub-groups so formed will tend to be homogeneous in
their price trends. For purposes of this simulation study we
therefore defined sub-groups as follows:
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1) Long range price change for each of the 326 items
in the core data were calculated, using unit value
indexes for the items (across outlets) for 00 versus
"95.

2) Noise was added to these indexes, items within a
major group were sorted by their values of the
perturbed index, and adjacent items were grouped
together. The grouping of items with close long term
indexes was to make the subgroups homogeneous, and
the addition of noise was done so that the homoge-
neity would be realistically imperfect.

Table 2 gives the population item structure that was
constructed, including the nomenclature in use in each of
the two countries, the number of groups at each level of
refinement, and the corresponding symbol for each class
level used in this paper. The “Representative Item” is the
lowest level at which an index is produced in the UK. This
corresponds to the US’s Entry Level Item (ELI), actually a
collection of similar or related items. In the US, indexes are
produced for categories one level up, ie., at the “Item
Stratum” level, but these categories are further divided by
the geographic areas in which the items are sold. Note that
there are 2 or 3 Item Strata/Sections # in a Class/Major
Group C, 3 ELI/Representative Items c¢ per Item
Stratum/Section / (except in one instance 2), and 10 or 11
items/varieties i in each ELI/Representative Item c. (Note:
an actual UK class might be larger or smaller than the



Survey Methodology, December 2006

corresponding US class; for example as a rule the ELI
probably takes in more sorts of specific items than does the
Representative Item. We had to force equivalence to ensure
that the same amount of information was used in each
approach. This adjustment will not affect our conclusions
regarding the relative merits of the basic methods used in
the two countries).

Table 2
Population Structure of “Cereal World”: Items
Number of
UK US Groups  Symbol
Major Group Expenditure Class 4 C
Section Item Strata 10 h
Representative Item Entry Level Item (ELI) 29 c
Variety Item 326 i

In addition to the item structure, each population of
transactions has a “spatial” structure, characterizing where
an item was sold. This structure is summarized in Table 3.
Outlets belong to chains (e.g., Safeway, Kroger), which cut
across the three US geographic primary sampling units from
which the cereal data were collected. (In the UK termi-
nology, chains are called “multiples.) Outlets in a given
chain share common ownership, with the exception of
“Chain 8,” which was a “catch-all” group consisting of
outlets not belonging to a major chain (there may have been
some ‘“‘mini-chains”). In matching this “chain structure” to
the classification of shops used in UK sampling, Chain 8
was considered a set of “independents” (the term used for
independently-owned shops in the UK). Chain 4, which
appeared to have the greatest homogeneity of pricing across
outlets, was regarded as a “centrally collected multiple,” the
term used in the UK for groups of outlets with centrally
controlled pricing. Each remaining chain was a non-
centrally collected multiple. The manner of collection and
estimation for each of these three types is given in the
description of UK methodology below.

Thus the population consists of N*° ~20,000 records for
’95 -’96 indexes, each record representing the purchase of
an item i within an outlet j. Attached to each item/outlet
are its PSU/Region [, its chain/shop-type 4, the
outlet/shop j, the item/variety i, the ELI/representative
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class/major group C, and p”, ¢, p**', and ¢’"', the
prices and quantities (in ounces) of the items sold in
(February of) the two years in question. We used this
population file (henceforth referred to simply as “the file”)
to simulate all phases of the US and UK operations.

3. Sampling Methodologies Simulated

The complicated sampling procedures we used to
simulate the US and UK approaches are patterned on the
respective practices of these two countries. These practices
change over time, and have variants even at a given point in
time. Our goal was not to determine which country does
better, nor to encompass all variants. Rather it was to
compare two distinct modes of sampling, with the range of
complexity those modes entail. The interested reader can
find a description of the US construction of the CPI in the
BLS Handbook of Methods (2005), Chapter 17. For the
UK’s Retail Price Index (RPI), we relied on The Retails
Prices Index Technical Manual (1998). A description of
more current UK practice can be found in the Consumer
Price Indexes Technical Manual (2005).

3.1 US Sampling Methodology

We first describe the US sampling methodology, which
requires three surveys employing probability sampling: (1) a
household survey, the Consumer Expenditure Survey
(CEX), to estimate household allocation of expenditure to
different categories of goods, (2) a second household
survey, the Point of Purchase Survey (POPS) to estimate,
within item groups, the relative amounts spent in different
outlets, and (3) an outlets survey, through which individual
items are selected and priced. In all three cases, sampling for
the simulation is random with replacement (though the
sampling employed in practice is considerably more
complicated). The first two surveys are based on simple
random samples, and the last is based on a probability
proportional to size ( pps) sample, where the size measures
are a function of expenditures as estimated from the CEX
and POPS. The sample for the third survey is a collection of

item ¢, the item stratum/section #, the expenditure  items within outlet/ELI combinations.
Table 3

Population Structure of “Cereal World”: Outlets
UK usS # Symbol
Region Primary Sampling Unit 3 I
Shop type: Independents Chain 8 k

) Central Chain 4

Multiples:
Non —central]  Chains 1 -3;5-7

Shop Outlet ~300 j
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3.1.1 CEX (Household Survey)

The goal is to estimate FE,., the gross household
expenditure on ELI ¢ within PSU /. We sampled using
simple random sampling with replacement (srswr) from the
file described above, within PSU, in such a manner as to get
unbiased expansion estimates

95
el s 3o

ny Jjelns(xl) iecns(xl)

where Ej; = gqj; pji» N, > was the population size (number
of records for psu [ in’95-°96), and n , was the sample
size of the CEX sample s(x/) in PSU [, chosen to match
actual US CEX sample sizes and to achieve coefficients of
variation of the estimates that approximated those achieved
through the actual US CEX; the x in s(x/) and n, is
meant merely to differentiate the CEX from the POPS
survey (which has a corresponding ““ p ”’; see below) or the
prices survey. This “imitation CEX” was a simplified
version of the actual survey. Our methodology tacitly
assumed that all customers in a given outlet bought items in
the same proportions; it did not allow for the inevitable
measurement error that accompanies any actual expenditure
survey, and (for 95 - ’96) it was too current: real CEX data
often predate by several years the outlet surveys for which
they are used. Since, however, the “household data”
collected were used in the corresponding UK methodology
(see below) as well, the simplified version sufficed for the
intended comparison of methodologies.

Higher level expenditures were estimated by simple
addition. Thus, for example, the total expended across
PSU’s in a given ELI ¢ is estimated by £’ =3, £, etc.
There were 500 CEX samples taken, each producing a
corresponding set of expenditure estimates.

3.1.2 POPS (Household Survey)

Here the goal is to estimate the distribution of
expenditures at different outlets for particular classes of
goods. These classes could be ELI’s or groups of ELI’s; in
the present study we assume they are the ELI’s. The actual
US TPOPS (Telephone Point of Purchase Survey) is, as its
name suggests, conducted by phone, using a sample rotation
scheme with a four-year cycle. We endeavored, as we did
with the CEX, to match statistical properties of our
procedure to the actual TPOPS, but it turned out that to
match sample sizes on our file of 20,000 would have given
larger than desirable sampling fractions within PSU’s. We
therefore cut the sample sizes in half — our “imitation
POPS” should have precision about 1/~/2 of the actual
TPOPS. Again, this modification will not affect the
conclusions of this study, because we used the identical data
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in the UK construction. Samples s(pl) of size n, were
drawn by srswr, and estimation was by the expansion
estimator:

E'V _ N/V z EY

Il — ljci*
“ n g

pl iecns(pl)

Since the POPS survey tends to be more up-to-date than
the CEX, we allow y to be the base year of the index, "95 in
’95 — ’96, but ’96 in 96 — ’97, efc. There were 500 runs
and sets of estimates, each to be matched with a CEX run.

3.1.3 Outlet Sampling

For each year y, selection of items from which to collect
prices involves the following steps:

(a) For each PSU /, and each of the 10 item strata 4,
we select 2 ELIs ¢ by probability proportional to
size with replacement sampling ( ppswr), with size
measure £, derived from the CEX.

(b) For each ELI ¢ selected, we select 8 outlets j by
ppswr, using as size measure POPS expenditure
estimates E"/jy.c. Thus altogether there are 160 ELI-
outlet pairs per PSU, and 480 total, with a certain
amount of repetition possible.

(c) Within outlet/ELI (j, ¢) we “go” (as the field
representative would literally go) to the outlet and
“list” all items belonging to the ELI and their
corresponding first period expenditures £, and,
with this within-outlet frame, sample 1 item by

pPps.

For each item so selected, we record the prices
Pijei» ¥ =1, 2. Thus we note that all aspects of the outlet
sampling are pps with replacement, based on estimates of
expenditure from one or other of the 2 household surveys or
from within the selected store. Again, we performed 500
runs, each run corresponding to a single CEX/POPS run.

3.2 US Estimation

“Elementary aggregates” [)”*', index estimates at the
PSUx Item stratum level, are the building blocks from
which the CPI is constructed. In most CPI’s around the
world, the lowest level indexes are unweighted averages of
one sort or another, as is the UK’s RA estimator discussed
below, and expenditure data are only used to aggregate
these to higher levels. In the US, the elementary indexes are
basically Horvitz-Thomson estimators relying explicitly or
implicitly on expenditure estimates from both the CEX and
POPS. In recent years, the US has for most item strata
adopted a geomean formula (see Appendix A), so that
estimates at this level take the form
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jel,ieceh and (i, j)es. Note that the weights are not
particular to the i™ item; we omit the time superscripts for
brevity. They are not simply equal to the reciprocal of the
number #,, of sample items in /k, as sample unbiasedness
considerations might lead one to expect (Balk 2003),
because the sampling probabilities do not reflect exact base
period expenditures on items; see the BLS Handbook of
Methods (2005).

Then the elementary indexes are aggregated using
estimated expenditures from the CEX according to a
Laspeyres formula, for example

to get the index for a given item stratum %, across PSU’s.

3.3 UK Sampling Methodology

The UK, like the US, combines three components in its
estimation methodology: (1) a household survey, the Family
Expenditure Survey (FES), to get estimates of amounts
spent on different item groups, (2) a shops survey, the
Annual Retailing Inquiry (ARI) to get expenditure
information by section and shop type, and (3) an outlet
survey of shops, to select items for pricing.

3.3.1 FES (Household Survey)

The goal is to estimate expenditures E ., for repre-
sentative items ¢, and E, , expenditures for region/section
combinations. For purposes of this study we will assume
that the data for the US’s CEX and the UK’s FES coincide
run by run, so there are, again, 500 FES data sets. Note that
the UK does not aim at the more detailed estimates E,
which the US targets.
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3.3.2 Annual Retailing Inquiry (Shops Survey)

The goal is to get estimates of expenditures E,, by
section and shop type. This is considerably broader than the
outlet (shop) by ELI (representative item) that the US’s
POPS seeks. We use the same data, for each of 500 runs, to
construct the ARI estimates that we used to construct the
POPS estimates for the simulated US CPL.

3.3.3 Outlet Sampling

Selecting items from which to collect prices involves the
following steps:

(a)A “judgment sample” of representative items c is
selected within each section 4. In the present
study (only to allow for simulation), within each
section, we select the two representative items with
largest values of E,. Note two differences from
the corresponding step (a) of the US method: (i)
selection is uniform across all regions /; (ii)
selection is not random, and, in particular, it does
not allow for duplication of representative items.
(Duplication can occur in the simulated US meth-
od, due to with replacement sampling of ELI’s
within item strata.)

(b)The field economists select the shops in a
particular locale in which to price a given
representative item. Traditionally, this was srswor,
after the field economist had constructed a frame
of appropriate shops. More recently, selection has
been by pps, where the size measure is floor space
dedicated to the type of goods the representative
item represents. Field economists do not draw
samples of “centrally collected” items: in the case
of a very large multiple, the price of an item is
collected from the multiple’s central office, and
taken to represent the price of that item in all shops
in the multiple. In the present study we proceeded
as follows: for each region / and representative
item ¢, we selected 8 shops as follows:

4 from non-central multiples
(Chains 1, 2, 3,5,6,7)

1 from a central multiple (Chain 4)

3 from independents (Chain 8)

In each case, for simplicity, we used srs without
replacement from shops having positive expenditure
for the representative item. The number of shops in
the UK (8 per representative item in each region)
matches the number of “outlets” in the US; there are
160 shop/representative item pairs per region, or 480
in total. Note the following differences from the U.S.
methodology:
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1. Information on shop type is being used for
stratification (and will play a role in estimation
below). This information is available in the US
sample but is bypassed in favor of the pps
methodology.

2. We are allowing the UK to have information
about the presence or absence of the specific
representative item ¢ (equivalent to the ELI) in
the list of shops before sampling, whereas the
US only in effect knows of the existence of some
ELI in the given item stratum. (This assumes a
multiple ELI-to-POPS category mapping, which
was typically the case until recently in US
operations; the current version of ELI-to-TPOPS
(telephone point of purchase survey) category
mappings is 1 to 1; that is, an outlet frame is
constructed for each individual ELL)

(c) Traditionally, for each representative item ¢, within a
given shop, the field economist selects that variety i
which he/she regards as dominating its sales-a
judgment sample of the most consistently purchased
variety. We formalize this as follows:

1. For a given shop/representative item pair (J, ¢),
we list all varieties .

2. For each variety, we find the minimum quantity
g, = Min(q’, ¢’*") over two years.

3. We sample the variety i with Max{q:}.
This process, of course, requires more
information than a field economist would have
at the earlier time period (and again is not used
in the US sampling described above) but may be
regarded as providing a surrogate for the field
economist’s appraisal of the relative continuity
of goods sold.

Note: 1t is convenient to refer to the combination
of selecting an outlet by srswor as in (b), and an
item within the shop as described in (c), as
maxming sampling.

3.4 UK Estimation

Elementary aggregates for the UK were calculated by a
Ratio-of-Averages (RA) formula within each cross-
classification cell defined by region, shop type, and repre-
sentative item This is basically an unweighted estimate,
given for independent shops by
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In the case of multiples, a weighted version of the above
formula is used with expenditures by shop type, estimated
from the ARI, providing relative weights of central versus
non-central multiples.

A countrywide index for representative items ¢ in the
sample (aggregated over shop types &k and regions /) is
then calculated by a Laspeyres type estimator:
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where ¢ e h, and 1, is based on E7, from the ARI and
E” from the FES (using these time periods keeps
information used the same between US and UK). Further
aggregation (over representative items c) is done using £,
etc. from the FES.

3.5 Comparison

Table 4 gives a summary comparison of the two meth-
odologies, US and UK, that we have been considering. The
predominant feature of the US method is strict probability
sampling and estimation, typically ppswr; that of the UK is
selective sampling, taking the most important item or
category as judged by expenditure or quantity sold. The
methods of forming elementary aggregates are different, and
the weights for aggregation in the UK are estimated at a
slightly coarser level at the lower stages.

Table 5 gives a summary of what might be considered
the strengths and weaknesses of the US and UK meth-
odologies. By the advantage of “brute strength,” which we
attribute to the UK approach, we mean the capitalizing on a
combination of two factors that often play a role in pricing
and price index construction. In the first place, market
leaders tend to dominate the price scene; for example, if
they sharply lower or raise prices, their lesser competitors
selling similar goods may think it necessary or warranted to
follow suit. Secondly, even if there is variation in the price
trends among similar goods, the leading sellers are likely to
dominate the price index by virtue of large expenditure
values, that is, because of their correspondingly large
weights.



Survey Methodology, December 2006

207

Table 4
Summary Comparison of US and UK Methodologies
usS UK
HH Exp. Survey Ep EY, By
Outlet Exp./Category HH(POPS) £} Shops Survey (ARD) £7,
select item categories 2 ELI’s c/item stratum A/PSU [ 2 rep. items’s c/section A/Region /

ppSWr (EZS /E?,f)
select outlets 8 outlets j/ELI ¢ x PSU /
DPPSWI (Elj}.’c/El}_;)

item within outlet/category 1 item i/jc pps (Ej},,/Ej,)

y41 \Suhei
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Jels \ Pijhei
ieceh
(i, j)es
- Ty Y+l
1 %E/h un
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higher aggregation Iy = =
2 Ey,
/

largest (E2° /1 E)
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Table 5
Comparison of US, UK Approaches

Strengths

Weaknesses

US Gather more information
More use of information
Satisfies classical sampling theory

Gives regional (PSU) estimates
Weighted estimators at

lowest level
More standardized operating
procedure

UK Relies on “Brute Force”
principle
Stratification of outlets
Shops survey in field Uses variety of sources

Possible repetition in selection
Ignores stratification of shops (that is, classification into chains)

Patchwork of weights

Inconsistent in Centralized pricing aggregation?
Unweighted and seemingly arbitrary estimator at lowest level

4. Results of Primary Study

Indexes comparing ’95 to *96 are given in Table 6, for
the population (1) as a whole (the three areas combined), (2)
broken down by classes/major groups, and (3) broken down
even further into item strata/sections. Four indexes are given
which might be taken as the targets of estimation. Recall the
discussion on targets which concludes Section 1.

Table 7 gives corresponding means, variances, and mean
square errors for US and UK estimates, where the mean
square error is computed with respect to the Fisher indexes.
We observe the following:

1) For the all-items, classes, and item strata, the US esti-
mates appear to approximate the geomean G. This
confirms what we have suspected from other work
(Dorfman et al. 1999), namely that the lowest level of
aggregation dominates (we used a Laspeyres formula
for higher level aggregation). The fact that G lies be-
tween the Laspeyres and superlative target provides
some evidence that the US switch to this method of el-
ementary aggregation was a step in the right direction.

2) There appears to be no clear order relation of UK
Section estimates to their corresponding targets;
for example, the Section 11 index is higher than
the target L, while the Section 12 index is lower
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than the superlatives, etc. As we aggregate up to
the Major Group and All Items levels, however,
the estimates clearly begin to approximate the
superlatives F or 7. (Dalén (1998) noted a
similar result in aggregating cut-off samples.)

3) If we take the Fisher as the target, even at the
section level, the root mean square error of the UK
estimator is much lower than that of the US
estimator. Given the relatively restricted nature of
the UK sample design, it is not surprising that the
UK estimator displays lower variance, but the form
of the UK estimator would not lead one to expect it
to unbiasedly approximate a Fisher index.
Nonetheless, our results suggest that, at least for a
population of purchases such as the one used in
this study, the purposive, “brute force” methods of
the UK (and many other countries) work well.

Similar results were found for the succeeding pairs of
years through *99 —’00. Figure 6 shows the all items year-
to-year geomean and Fisher for five pairs of years and the
means across samples of the corresponding US and UK
estimators. (Note the difference in scale between Figure 6
and Figures 1 through 5). It is readily seen that the U.S.
estimator tends to track the population geomean. The UK
estimator, tracking the Fisher, tends to overestimate in the
later years, although it runs much closer to the Fisher than to
the population geomean. It should be noted that we used
increasingly out-of-date expenditure data, namely the *95
data, for purposes of sampling and estimation. It is possible

that outmoded expenditure data are having a greater impact
on the UK estimates than on the US estimates, perhaps by
leading us to oversample expensive representative items or
to focus on some group of shops that are increasingly
pricey.

Results for the classes (“hot,” efc.) were very similar for
the US vis-a-vis the geomean and are not shown. Figure 7
shows the difference between the mean year-to-year UK
estimates and the Fisher, for each of the four classes. It can
be seen that the tendency to overestimate in the later years
affects all four classes.

Overall, the UK estimators provide better estimates of
the superlative Fisher target than do the US estimators.
Table 8 gives the ratio of UK root mean square error to US
root mean square error, for all five pairs of years, for all
items, for groups, and for sections. There are a few
anomalous places, notably in the 98 —’99 indexes where,
for section 2 of “hot,” and consequently for the entire class
“hot,” the UK estimates are appreciably worse. In general,
however, the UK methods provide much better estimates.
This is due in part to a tighter sampling structure (mainly
because purposive/cutoff sampling is much more restrictive
than random selection of the set of items which can enter the
sample), yielding, not surprisingly, less variance. In part
though, as well, it is due to a surprising tendency of the UK
estimators to target the corresponding Fisher indexes,
reducing bias. Since the UK estimators do not formally
resemble the Fisher index, the reasons for their tendency to
approximate it merit further study. We turn to this issue in
the next section.

Table 6
Potential Target *95 —’96 Indexes
Description geomean Tornqvist Fisher Laspeyres
All 1.053 1.002 0.997 1.079
Classes/Major Groups
1 —Hot 1.058 1.052 1.052 1.078
2 — Sugary 1.042 0.964 0.956 1.072
3 —Fruity 1.044 1.007 1.007 1.067
4 —Plain 1.069 1.027 1.027 1.092
Item Strata/Sections
Hot—11 1.043 1.044 1.044 1.057
Hot— 12 1.073 1.059 1.058 1.097
Sugary —21 1.003 0.917 0.910 1.034
Sugary — 22 1.063 0.982 0.972 1.093
Sugary —23 1.093 1.052 1.054 1.119
Fruity—31 0.977 0.955 0.950 0.985
Fruity — 32 1.165 1.110 1.116 1.204
Plain —41 1.067 1.021 1.021 1.094
Plain —42 1.030 0.996 0.996 1.050
Plain —43 1.104 1.063 1.062 1.125
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Table 7
Simulation Results for *95 —*96 Indexes
U.S. UK.
Description Target Index Mean Std. Dev. RMSE Mean Std. Dev. RMSE
All 0.997 1.057 0.016 0.062 1.002 0.011 0.012
Classes/Major Groups
1 —Hot 1.052 1.059 0.031 0.032 1.045 0.022 0.023
2 — Sugary 0.956 1.046 0.030 0.095 0.971 0.023 0.027
3 — Fruity 1.007 1.053 0.035 0.058 0.986 0.027 0.034
4 —Plain 1.027 1.072 0.025 0.051 1.025 0.016 0.016
Item Strata/Sections
Hot—11 1.044 1.045 0.035 0.035 1.064 0.025 0.032
Hot—12 1.058 1.072 0.049 0.051 1.027 0.035 0.047
Sugary — 21 0.910 1.004 0.050 0.106 0.850 0.045 0.074
Sugary — 22 0.972 1.070 0.051 0.111 1.089 0.030 0.121
Sugary — 23 1.054 1.095 0.044 0.060 1.026 0.027 0.039
Fruity — 31 0.950 0.979 0.020 0.035 0.932 0.020 0.027
Fruity — 32 1.116 1.178 0.084 0.104 1.077 0.059 0.071
Plain — 41 1.021 1.069 0.050 0.070 1.060 0.030 0.049
Plain — 42 0.996 1.033 0.035 0.051 0.987 0.031 0.032
Plain —43 1.062 1.107 0.042 0.061 1.028 0.023 0.041
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Figure 6. Index Targets and Estimates for All Cereals February-to-February Indexes and Index Estimates,
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Figure 7. Differences Between U.K. Estimates and Population Fisher Indexes February-to-February Indexes and

Index Estimates, 1995 = 100.
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Table 8
Ratios of UK RMSE to US RMSE
Description ’95-’96  ’96-°97 ’97-°98 ’98-°99 ’99-"00
All 0.196 0.192 0.419 0.548 0.288
Classes/Major Groups
1 —Hot 0.713 0.517 0.483 1.437 0.589
2 — Sugary 0.286 0.336 0.314 0.522 0.282
3 — Fruity 0.595 0.508 0.308 0.501 0.405
4 —Plain 0.310 0.297 0.777 0.319 0.404
Item Strata/Sections
Hot—11 0.923 1.066 0.682 0.529 0.508
Hot—12 0.920 0.850 1.169 1.860 0.842
Sugary — 21 0.702 0.392 0.421 0.595 0.330
Sugary — 22 1.092 0.426 0.380 0.341 0.365
Sugary — 23 0.650 0.455 0.448 0.925 0.851
Fruity — 31 0.778 1.059 0.637 0.581 0.618
Fruity — 32 0.683 0.809 0.314 0.457 0.356
Plain — 41 0.709 0.623 0.494 0.567 0.317
Plain — 42 0.642 0.511 1.117 1.092 1.005
Plain —43 0.678 0.839 0.641 0.815 0.701

5. Follow-Up Study

There are four aspects in which the approaches of the UK
and US differ: (1) the stratification structure, in particular,
the reliance of the UK on different shops strata and, to an
extent, on centralized sampling, (2) the aggregation and
weighting structure, (3) the mode of sampling at different
stages, and (4) the formula for elementary aggregates. This
makes it difficult to disentangle the extent to which each
aspect is contributing to the relative merits of US and UK
index construction. In particular, as noted in the last section,
it is a bit of a mystery why, especially at higher aggre-
gations, the UK index estimator tends to target the super-
lative indexes.

In our follow-up study we focus on the lowest level of
index construction, that is, on (3), the shop-representative
item (ELI) level of sampling and on (4), the formulas for the
elementary indexes. We compare the relative merits of
different options, taking the within area elementary indexes
as our targets. Aggregation to higher level indexes will be
carried out uniformly for all alternative lower level options
considered, using the true population expenditure shares.
The importance of the method of construction of the
elementary indexes is widely recognized; see Diewert
(2004) and references; also Dorfman efal. (1999). The
example discussed in Appendix B, with results given in
Table 9, illustrates the decisive effect that the lowest level of
index construction has on the index as a whole.

Thus, a likely important source of the difference in
results of US and UK methodology lies in the sample
estimation of the population elementary indexes. But this
leaves open the question whether the differences arise
because of differences in sampling method or in the
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formulas used in estimation, or in both. Thus we are
interested in determining: (1) how judgment sampling (in
this case, cutoff sampling based on maxming) performs
compared to probability sampling represented by ppswr,
holding the estimator of the elementary indexes fixed, and
(2) how estimators of elementary indexes compare when we
keep the sampling method fixed. It will also be of some
interest to determine what happens when maxming sampling
is based on data from the base and previous time period,
rather than the base and current period.

5.1 Sampling Methods and Estimators at the
Elementary Level

To explore these questions, we carried out further
simulation studies. The data were the same Cereal Data used
in the primary study (successive Februarys), but limited to
the Independent Shops, Chain 8. This was done to make the
study more manageable but also because, for the other
chains, the UK elementary index estimators were more
complicated than the simple dutot. Also, it is reasonable to
expect price behavior to be most heterogeneous in this
chain, so that inherent differences will be clearer. Chain 8
was the largest of the chains, comprising each year about
30% of the whole population, approximately 6,000 records.

The basic structure remained the same: 3 psu’s, 4 major
groups/expenditure classes (hot, sugary, fruity, and plain),
10 sections/item strata, and 29 representative items/ELI’s.
For each ELl/representative item, 3 outlets (one item per
outlet) were selected, as opposed to 10 in the primary study
above. For investigating maxming based on previous time
periods, the original 5 data sets, each using price and
quantity data for a pair of years (’95/°96, 96/°97, etc.) were
reduced to include only items that allowed “back matching”;
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that is, matching across three years to compare prices of
items in outlets for 95/°96/°97, *96/°97/°98, etc. About 90%
of the Chain 8 records allowed back matching. (In
considering the results below, it is probably worth noting
that the sample reduction could disproportionately impact
the back matched maxming). We shift our attention from the
Fisher index to the superlative Walsh index, due to an astute
suggestion of a referee, discussed in Appendix C.

Three estimators were used for elementary indexes: the
ratio of averages (RA) (the dutof), the unweighted geomean
(also known as the Jevons), and the average of ratios (4R).
In the pps sampling of outlets, and then in the sampling of
items within outlets, the size variable (expenditure) was
assumed known (rather than being estimated, as in the main
study). Besides pps with replacement (as in the US
approach), and maxming, we also investigated pps without
replacement, on the suspicion it would be less variable than
the with replacement version.

For each mode of sampling, within each psuw/ELI
combination, we took 500 samples. We calculated the mean
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square error of estimates with respect to a target ELI — level
Walsh Index. Averages of mse across ELI’s were calculated
for each mode of sampling/estimation, within each psu.

Table 10 shows the ratio of these averages to the average
mse for the maxming/dutot combination. For each estimator,
for each psu, with one exception ( psu 3, °99/°00), maxming
leads to lower mse, often by an appreciable margin.
Sampling pps without replacement is second best. Holding
the method of sampling fixed (comparing rows 1, 4, 7, then
2,5, 8, etc. in Table 10), we note that with few exceptions,
the dutot does better than the geomean, which does better
than AR. These results suggest: (1) maxming is better than
pps(exp), and pps(exp) is better than ppswr(exp). (2) The
dutot is more efficient than the geomean, and the geomean
is more efficient than an average of ratios. There is a
beneficial synergism between maxming sampling and the
dutot. Biases and variances were also studied, and the
results (not shown) tended to follow the same pattern.

Table 9
Population Indexes *95 —’96, Chain 8
Description Laspeyres geomean™ Fisher = Walsh  Laspeyres of Walsh Elementary
All 1.129 1.091 1.028 1.030 1.040
Classes/Major Groups
1 —Hot 1.161 1.115 1.080 1.082 1.084
2 — Sugary 1.129 1.088 1.007 1.012 1.025
3 —Fruity 1.084 1.054 0.997 1.005 1.015
4 —Plain 1.135 1.101 1.046 1.042 1.050
Item Strata/Sections
Hot—11 1.157 1.117 1.088 1.089 1.090
Hot— 12 1.164 1.113 1.072 1.075 1.079
Sugary —21 1.086 1.045 0.962 0.970 0.992
Sugary — 22 1.187 1.142 1.055 1.056 1.058
Sugary — 23 1.117 1.091 1.034 1.039 1.043
Fruity—31 1.003 0.992 0.949 0.965 0.966
Fruity—32 1.228 1.172 1.100 1.091 1.102
Plain —41 1.212 1.161 1.091 1.080 1.090
Plain —42 1.048 1.030 0.997 0.997 0.998
Plain —43 1.136 1.107 1.048 1.046 1.056
* Weighted by base period expenditure.
Table 10
Standardized Average Relative Mean Square Error Across ELI’s, Reduced Populations, Chain 8
psu 2 psu3 psu 4
estimator/sampling method ’96 — 97 *97 —’98 ’98 — 99’99 — 00’96 — 97’97 — 98 98 — 799’99 — 00 96 — *97 97 — *98 *98 — ’99 99 — 00
dutot/maxming(UK) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
dutot/ppswor 1.73 1.70 1.68 1.91 1.23 1.82 1.35 2.24 1.22 1.06 1.12 0.93
dutot/ppswr 2.13 2.10 1.91 2.14 1.42 2.10 1.46 2.67 1.45 1.23 1.36 1.07
geomean/maxming 1.20 1.16 1.16 1.06 1.06 1.14 1.08 1.05 1.10 1.11 112 096
geomean/ppswor 2.08 1.88 1.98 2.27 1.33 1.94 1.47 2.59 1.33 1.09 1.28 0.97
geomean/ppswr (US) 2.49 2.29 2.18 2.53 1.58 2.23 1.58 3.09 1.59 1.30 1.52 1.12
AR/maxming 1.42 1.32 1.31 1.14 1.24 1.03 1.30 1.05 1.11 1.20 1.21 1.07
AR/ppswor 2.81 2.35 2.49 2.85 1.70 2.31 1.77 343 1.57 1.30 1.42 1.17
AR/ppswr 3.23 2.77 2.66 3.08 2.03 2.58 1.87 3.96 1.83 1.49 1.66 1.30
dutot/maxming, prior q’s 1.12 1.19 1.19 1.41 1.56 1.42 1.69 1.51 1.20 1.02 085 1.48
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That the dutot sample index can target the Walsh
population index (and hence indirectly any superlative
index), when consistently largest sellers are sampled is, we
suggest, the result of a very simple, “brute force” mech-
anism: to the extent that the Walsh can be represented by a
small sample of items, it is best represented by those with
the consistently largest quantities, and it is these items that
the maxming sampling scheme virtually always supplies. In
Appendix C we discuss an alternative explanation for the
good performance of the maxming/dutot combination.

Average mean square errors were also calculated for the
maxming/dutot combination based on previous values of ¢,
that is on ¢!, ¢’. Results are given in the last row of
Table 10. There is an anticipated weakening compared to
the updated maxming/dutot, but the results still compare
favorably to the other options. We study this further in sub-
section 5.2.

5.2 Effect of Lagged Quantities on maxming
Sampling

To put the results of Section 4 in perspective, we need to
inquire what the effect is of using lagged ¢ ’s in maxming.
The reason is simple: although at first sight, using base and
current period quantities seems the obvious way to capture
the UK’s idea of persistent items, nonetheless, this involves
using information (the current period quantities) which was
not used in simulating US sampling. Perhaps this gives the
UK methodology an unfair edge.

We therefore compared the US approach, viz. ppswr
(with size variable being base period expenditure) and
geomean at the elementary level, with the UK approach
represented by maxming — dutot, but now with maxming
based on quantities ¢, , and ¢,. Data sets were reduced
slightly to guarantee that we would have matching data for
three consecutive years. Aggregation to upper level indexes
used actual population expenditures for both US and UK.

Table 11 gives results for the All Cereals Indexes for
chain 8, comparing biases, standard deviations, and root
mean square errors with respect to the population Walsh. As
expected, the results are not as good as those obtained by
using current ¢ ’s. Nonetheless, with respect to all three
accuracy measures (bias, standard deviation, and root mean
square error), the UK maxming/dutot combination still does
better than the US approach representing probability
sampling.

For finer categories, Table 12 gives the ratios of mean
square errors obtained under the UK method with lagged
q’s to those obtained under the US method. Although they
are generally larger than those in Table 8, they still suggest
that the purposive sampling approach of the UK is better.

Statistics Canada, Catalogue No. 12-001

6. Discussion

We have presented a comparison of two fundamentally
different approaches to sample design and inference for a
consumer price index. The inescapable conclusion is that, in
the population we studied, the “UK” approach, which
involves tighter stratification and, more importantly, more
restrictive judgment sampling within strata than the
probability sampling of the “US” approach, does better in
estimating a target superlative index.

This is shown to be the case, whichever low level price
index estimator (the dutot, or geomean, or the average of
ratios) is employed, although the dutot (ratio of averages)
performed best.

The UK approach does better for two reasons: (1) its
tighter sampling, restrictive of items selected (for example,
see Table 13 described in Appendix C), leads, not
surprisingly, to lower variance, an observation made already
in de Haan et al. (1999), and (2) the dutot sample indexes
target the superlative indexes under dominant market
sampling, which was surprising and called forth the invest-
tigation described in Section 5. On the other hand, the US
approach yielded an index estimator which could be
described as unbiased, but it was unbiased for the (wrong)
population geometric index weighted by first period
expenditure. Thus it tended to run considerably higher than
the target superlative index (whether Fisher, Walsh, or
Tornqvist).

If sample sizes were allowed to increase, we could
anticipate that the variances of both the US and UK would
decrease, but the UK variance would remain lower. The bias
of the US estimator for the superlative target would be
unaffected by increased sample size, so that the relative
mean square error of the UK approach would be increase-
ingly lower.

In practice, of course, period 2 quantities are not
available at the time of sample selection (at period 1), and as
part of our follow-up study we give some measure of the
partial degradation that arises from using past quantities: it
is not severe enough to undo the conclusion of better UK
performance. Furthermore, the field economist’s judgment
as to the best seller might be able to invoke data more recent
than a year earlier. Thus the actual effect might be some-
where between the lagged and non-lagged versions of
maxming which we have used. In practice, however, US
field economists may often sample items within outlets
based on an estimate of expenditure share that is really a
smoothed average of base period and recent expenditure
shares. This may attenuate the bias we have seen in our
simulations, where only the base period expenditures were
used for within-store sampling.
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Table 11
Biases, Standard Deviations, and Root Mean Square Error (Each Multiplied by 1,000), in Estimating Population All
Cereals Walsh Index, Chain 8, Based on Three Approaches to Sampling/Estimating Elementary Indexes*

(a) Bias

’95-796 ’96-"97 ’97-"98 ’98-"99 ’99-°00
dutot/maxming 29 15 -13 33 2
dutot/maxming, prior q’s - 46 32 82 36
geomean/ppswr 78 62 66 82 66

(b) Standard Deviation

’95-796 ’96-"97 ’97-"98 ’98-"99 ’99-°00
dutot/maxming 16 13 11 14 12
dutot/maxming, prior q’s - 14 12 15 14
geomean/ppswr 22 18 17 18 20

(c) Root Mean Square Error

’95-796 ’96-"97 ’97-"98 ’98-"99 ’99-°00
dutot/maxming 33 20 17 36 12
dutot/maxming, prior q’s - 48 34 83 39
geomean/ppswr 80 65 68 84 68

* At ELI/Representative Item level. To get overall index estimates, the elemenentary index estimates were aggregated

using known population expenditures.

Ratios of UK RMSE to US RMSE, Chain 8, Walsh Targets:

Table 12

maxming Using Lagged ¢’s & dutot Versus ppswr(Expenditure) & geomean

Description ’96-°97 ’97-°98 ’98-"99 ’99-"00
All 0.748 0.498 0.993 0.567
Classes/Major Groups
1—-Hot 1.539 0.495 1.280 0.765
2—Sugary 0.563 0.676 0.941 0.797
3—Fruity 0.409 0.323 0.463 0.852
4—Plain 0.915 0.560 1.164 0.359
Item Strata/Sections
Hot—11 0.748 0.607 0.660 0.657
Hot—12 1.695 0.599 1.333 0.843
Sugary—21 0.757 0.593 1.136 0.924
Sugary—22 0.370 0.776 0.751 0.671
Sugary—23 0.479 0.785 0.796 0.508
Fruity—31 0.570 0.443 0.678 1.008
Fruity—32 0.526 0.350 0.277 0.674
Plain—41 1.167 0.509 1.395 0.397
Plain—42 0.623 0.411 0.918 0.624
Plain—43 0.919 1.171 0.668 0.560
Table 13

Items Selected by maxming and pps( /quy +1 ) in 500 Samples

’95 -’96, Chain 8, psu 2, ELI 105

pps items selected 2889 2803 1564 2763 1558 2242 2344 2776 760 2850
% of samples in which selected 43.2 322 104 54 387 153 133 0.87 0.8 0.4
maxming items selected 2889 2803
% of samples in which selected 80.87 19.13
’95 796, Chain 8, psu 3, EL1 401
pps items selected 1731 2378 2866 1742 2922 2375 2528 403 871
% of samples in which selected 33.27 18.8 12.8 12.73 9.47 4.6 427 2.8 1.27
maxming items selected 2378 1731 2866 1742
% of samples in which selected 46.27 24.47 15 14.27
’99 -’00, Chain 8, psu 4, EL1401
pps items selected 1731 2866 1742 2378 2922 2528 403
% of samples in which selected 30.07 21.93 143 11.07 9.53 6.8 6.27
maxming items selected 1742 2866 2922 1731
% of samples in which selected 34.27 30.87 18 16.87
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It is generally accepted that the non-randomization
approaches are intrinsically cheaper. For example, there are
typically fewer outlets to visit, and price collection within
outlets is less labor intensive. Thus, for a given budget we
can expect the UK approach to be more efficient, compared
to US probability sampling, than the present study suggests.

It would be salutary to expand this study to scanner data
for products other than cereals. In particular, items with
more volatile price movements would be of great interest.
To some extent, the good behavior of maxming/dutot may
be related to the surprising closeness of the population dutot
to the superlatives (as seen in Table 1). How typical is such
closeness, and, if it is absent, will the good sampling
behavior persist?

One final caveat. It may be a good idea in practice to
inject a dose of randomness at some stage or stages of the
sampling process, and in particular be a bit cautious about
centralized sampling — not for statistical reasons, but to
guarantee fairness and the appearance of fairness (Reinsdorf
and Triplett 2005, Section II; Royall 1976).
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Appendix B
An Example Illustrating the Importance
of Lowest Level Aggregation

We here present a simple example to illustrate the
importance of the method used for constructing the
elementary indexes. We compare population Walsh indexes
to indexes resulting from aggregating elementary Walsh
indexes according to a Laspeyres formula instead. The
reason for focusing on the Walsh is given in Appendix C.
The “pure” Walsh index is

z /q:v q,_v+1 pr

W=

_ =~ y,y+l
z [qiv qiv+1 pl,_v h zsh Wh ?

1

where the W,””*' are the A" elementary Walsh indexes

and
z [ql,_v qiv+1 pl,_v

~ _ ieh

b= z [ql,_v qiv+1 pl,_v

1

are proper Walsh aggegration weights. To this we compare
a Laspeyres aggregation of elementary Walsh indexes
(“ersatz Walsh”), L{;y” =X>¥s, W 71 where the S,
are standard base period weights.

The results are given in Table 9. We do see a perceptible
difference between the actual population Walsh and the
Laspeyres aggregate of elementary Walsh indexes: the latter
tends to run slightly higher. However, these differences are
on a par with the differences between them and the Fisher.
They are minor compared to the gap between the geomean
or Laspeyres indexes and the superlatives. This sort of result
verifies that sound procedure at the lowest level is a key part
of index construction.

Appendix C
The maxming/dutot Combination

Why does the maxming/dutot combination work so well,
seeming to lead to unbiasedness for the superlative indexes?

A referee notes that maxming sampling bears a strong
resemblance to sampling pps with size variable /¢’ ¢;*;
for ppswor (\/q”¢**"), the dutot is approximately unbiased
for a Walsh target index, and so, indirectly, for any other
superlative index.

Indeed, for the expectation of the numerator of the dutot,

under this probability sampling scheme, we have
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where E_() signifies expectation with respect to the sample
designand I, is a random indicator taking the values 1 or 0,
as i’ is in the sample or not. We get a similar expression for
the denominator. The ratio of these two expected values is
the Walsh. Therefore, apart from the usual (mild) ratio bias,
which can be shown to be typically positive, the dutot does
indeed target the Walsh, under this pps scheme.

We need to ask: do the two modes of sampling actually
tend to have a sizeable overlap in what items get picked?
For each run, for each psu [, ELI c, three items were selected
either by maxming or by ppswor (\Jg”¢’*") of items within
lc. Table 13 gives the percentage of times (over 500 runs)
different items make it into the sample, for some arbitrarily
selected representative cases. We conclude, not entirely
without surprise, that: (a) pps sampling leads to a wider
spread of items selected, (b) the items selected by maxming
are a subset of those from pps, (c) there is a certain amount
of correlation of “dominant items”, that is, of those items
that tend most to be selected by either method. In short,
maxming and pps(\Jq” ¢°*') appear to be related, but
loosely.

To get further insight into the relationship between the
two sampling methods, we calculated bias and mean square
error estimates, with respect to the Walsh population index,
for the dutot index for each ELI, both for maxming and
pps( 4, q,,) sampling. The bias and MSE estimates were
based on 500 runs for each sampling method. Summary
statistics were calculated across ELI’s for each pair of years
and each psu. Table 14 gives the percentage of ELI’s for
which the dutot elementary indexes are positively biased for
each mode of sampling. As anticipated, pps sampling tends
to result in positive bias; we find that maxming is equally
biased positive and negative.

Table 14
Percentage of ELI’s for Which the dutot
has Positive Bias for a Walsh Target,
for Two Sampling Schemes

pos(Ja,4,11)
psu?2 psu3 psud psu?2 psu3 psu4

’95-796  75.0 86.2 759 64.3 61.1 61.1
’96-°97  60.7 72.4 65.5 53.6 65.5 51.8
97-°98  65.5 75.9 78.6 41.4 27.6 429
’98-°99 724 759 70.4 48.3 75.9 40.8
’99-°00 89.7 72.4 759 48.3 20.7 449

maxming
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Table 15 (a) gives the percent of ELI’s in which the
absolute bias from using maxming is bigger than that from

pps( /qy q,.)- In this regard, pps sampling is better.
However, Table 15 (b) gives the percentage of ELI’s in
which maxming yielded a larger mean square error, and here
maxming does better in all but two time periods/psu’s. We
regard the mean square error criterion as the more decisive,
especially given the bi-directionality of maxming’s biases.

Table 15
Percentage of ELI’s for Which the dutot’s Bias and
Mean Square Error for a Walsh Target is Less for
Probability Proportional to Size
(Size Variable = [g,q,,, ) than
for maxming Sampling

(a) Bias of pps less (b) MSE of pps less
psu?2 psu3 psuéd psul psu3 psu4

95 -796  82.1 93.1 86.2 32.1 58.6 414
96 -’97  89.2 96.6 100.0 35.7 37.9 27.6
97 -’98 89.7 86.2 100.0 414 24.1 643
98 -’99  89.7 82.8 92.6 414 379 40.7
99 -’00  89.7 96.6 414 345 31.0 37.9

We conclude that the good effects of maxming sampling
combined with the dutot estimator are not explainable in
terms of approximate mimicry of pps sampling. They
behave differently; and overall maxming seems to be
somewhat better than pps (,/q, q,,.,)-

We can see no alternative to explain why the dutot
sample index should target the Walsh population index
when the consistently largest sellers are sampled than that of
this “brute force” mechanism: to the extent that the Walsh
can be represented by a small sample of items, it is best
represented by those with the consistently largest quantities,
and these items are the ones the maxming sampling scheme
supplies.
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An Evaluation of Matrix Sampling Methods Using Data from the
National Health and Nutrition Examination Survey
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Abstract

Researchers and policy makers often use data from nationally representative probability sample surveys. The number of
topics covered by such surveys, and hence the amount of interviewing time involved, have typically increased over the
years, resulting in increased costs and respondent burden. A potential solution to this problem is to carefully form subsets of
the items in a survey and administer one such subset to each respondent. Designs of this type are called “split-questionnaire”
designs or “matrix sampling” designs. The administration of only a subset of the survey items to each respondent in a matrix
sampling design creates what can be considered missing data. Multiple imputation (Rubin 1987), a general-purpose
approach developed for handling data with missing values, is appealing for the analysis of data from a matrix sample,
because once the multiple imputations are created, data analysts can apply standard methods for analyzing complete data
from a sample survey. This paper develops and evaluates a method for creating matrix sampling forms, each form
containing a subset of items to be administered to randomly selected respondents. The method can be applied in complex
settings, including situations in which skip patterns are present. Forms are created in such a way that each form includes
items that are predictive of the excluded items, so that subsequent analyses based on multiple imputation can recover some
of the information about the excluded items that would have been collected had there been no matrix sampling. The matrix
sampling and multiple-imputation methods are evaluated using data from the National Health and Nutrition Examination
Survey, one of many nationally representative probability sample surveys conducted by the National Center for Health
Statistics, Centers for Disease Control and Prevention. The study demonstrates the feasibility of the approach applied to a
major national health survey with complex structure, and it provides practical advice about appropriate items to include in

matrix sampling designs in future surveys.

Key Words: Missing data; Multiple imputation; Respondent burden; Split questionnaire; Sample survey.

1. Introduction

Data from sample surveys are used by researchers and
policy makers in many fields. These surveys often involve
nationally representative probability samples and extensive
data collection based on questionnaires, and they must
balance the competing goals of reasonable length and
completeness in providing relevant information. The
number of topics covered by such surveys, and correspond-
dingly the amount of interviewing time involved, have
typically increased over the years. The resultant increased
respondent burden may be among the factors contributing to
the declining response rates that have occurred. Such
declining rates can result in reduced precision of survey
estimates. They can also result in increased bias, if
systematic differences between the nonrespondents and
respondents are not accounted for in analyses of the
incomplete data. Moreover, the expansion of topics covered,
along with efforts to maintain high response rates, have
increased the costs of conducting surveys.

One potential solution to the problem of providing the
information that is needed while limiting respondent burden
is to carefully form subsets of the items in a survey and
administer one such subset to each respondent. Different
subsets of questions (items) are administered to different
subsets of respondents, so that each item is administered to
at least some of the respondents. Questionnaire designs of
this type are called “split-questionnaire” designs or “matrix
sampling” designs, the latter name reflecting the idea that
respondents (rows) and items (columns) are both “sampled”
from a conceptual complete population data matrix. In many
matrix sampling designs, some items (herein called “core”
items) are administered to all respondents, whereas other
items (herein called “split” items) are only administered to a
subset of respondents. Typically, the items chosen to be core
items either are especially important or are predictive of
many of the split items.

The administration of only a subset of the survey items to
each respondent in a matrix sampling design creates what
can be considered missing data, with the missingness being

1. Neal Thomas, Datametrics Research, Inc., 61 Dream Lake Drive, Madison, CT 06443, U.S.A. E-mail: snthomas99@yahoo.com; Trivellore E.
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mkatzoff@cdc.gov; Clifford L. Johnson, Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, Centers for
Disease Control and Prevention, 3311 Toledo Road, Hyattsville, MD 20782, U.S.A. E-mail: cljohnson@cdc.gov.
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at random or even completely at random (Rubin 1976),
since the missing data are the result of a known probability
mechanism based possibly on design variables. Multiple
imputation (Rubin 1987), a general-purpose approach devel-
oped for handling data with missing values, is appealing for
the analysis of data from a matrix sample, because once the
multiple imputations are created, data analysts can apply
standard sample survey methods to the analysis of the
completed data. Moreover, if the matrix sample has been
designed in such a way that the items that are administered
to each respondent are predictive of the items that are not
administered, then the multiple-imputation approach can
utilize the included items to recover information about the
excluded items. We focus on multiple imputation because it
is well-suited for this situation: 1) the burden of applying
complex multivariate methods can be performed once by
the survey organization most familiar with the design; 2) it
can be implemented with existing software; and 3) it does
not require novel methods for each of the numerous
estimands targeted in most studies. However, alternative
estimation methods to multiple imputation, both model-
based and design-based, can be developed and applied to
data from matrix designs.

The matrix sampling approach has been applied or
explored in various settings, such as educational assessment
(Sirotnik and Wellington 1977; Beaton and Zwick 1992;
Zeger and Thomas 1997), health research (Wacholder,
Carroll, Pee and Gail 1994; Raghunathan and Grizzle 1995;
Houseman and Milton 2006), the US Census (Navarro and
Griffin 1993), and business (Shoemaker 1973). Moreover, a
type of matrix sampling was also used in the National
Health Interview Survey of the National Center for Health
Statistics (NCHS), Centers for Disease Control and Pre-
vention prior to 1997. In that survey, chronic conditions
were divided into six lists, and information about the
conditions on each list was obtained from about one-sixth of
the respondents (Schenker, Gentleman, Rose, Hing and
Shimizu 2002). In the context of data collection for a
general purpose national health survey, however, an
approach to creating matrix sample designs that exploits the
inherent associations among the items has not been studied.

This paper develops and evaluates a method for creating
matrix sampling forms, each form containing a subset of
items to be administered to randomly selected respondents.
The method can be applied in complex settings, including
situations in which skip patterns are present. Forms are
created in such a way that each form includes items that are
predictive of the excluded items, so that subsequent analyses
based on multiple imputation can recover information about
the excluded items that would have been collected had there
been no matrix sampling. The method assumes that a
training sample is available. The training sample may be
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from a previous administration of a complete survey or from
a pilot sample collected to support survey design. The
matrix sampling method is evaluated in a study using data
from the National Health and Nutrition Examination Survey
(NHANES), one of many nationally representative surveys
conducted by NCHS (http://www.cdc.gov/nchs/nhanes.
htm). The NHANES, a cross-sectional survey which has
been repeated several times during different time periods,
obtains a large amount of data from respondents via a
household questionnaire, a linked mobile-site medical ex-
amination, and laboratory analysis of biological specimens.
It is of interest to examine the feasibility of matrix sampling
designs for surveys such as the NHANES, which has
intricate structural dependencies among its items reflected in
its numerous skip patterns, along with its multiple survey
components. For purposes of realism, the form-design
method is applied using pilot data from the Second
NHANES (NHANES II), and then the resulting design,
together with multiple-imputation methods, are evaluated in
a simulation study based on NHANES III data. Section 2
describes the method for designing matrix sampling forms.
In Section 3, the design and results of the study based on the
NHANES are described. A concluding discussion is given
in Section 4.

2. Designing Matrix Sampling Forms

This section develops a method for creating matrix
sampling forms, each form containing a subset of items to
be administered to selected respondents.

In designing a matrix sample, it is necessary to decide
which items will be core items to be included on all forms,
and which items will be split items to be included on only
some forms. Typically, the core items are selected based on
substantive judgment as well as other considerations about
the relative importance of items. Key items, for which
precision of certain estimators is to be maximized, should be
designated as core items, whereas less important items can
be designated as split items. In addition, it is useful to select
core items that are predictive of many of the split items, so
that information about split items that are excluded from a
form can be recovered from the core items in conjunction
with the split items that are included in the form. Finally, the
cost and respondent burden associated with an item are a
consideration, since it can be beneficial to designate expen-
sive and/or burdensome items as split items. The emphasis
in this development is on how to allocate the split items to
forms once the core items have been chosen, so it is
assumed here that the core items have already been selected.
However, it will be seen that the method for allocating split
items uses a measure that also accounts for the usefulness of
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the core items for predicting the split items. The potential to
predict split items is estimated from a training sample.

It is also necessary to select a format for organizing the
split items. To ensure that every pair of split items appears
together on some form, so that direct estimation of all two-
way associations between variables is possible, the split
items are divided into blocks, and matrix sampling forms
are created by putting two or more blocks of split items
together (Raghunathan and Grizzle 1995). The size and
number of blocks determine the length and number of
forms. For example, in the study involving the NHANES to
be discussed in Section 3, the split items are divided into
four blocks, and each form contains two blocks (along with
the core items), so there are a total of six (4 choose 2) forms.
In the method developed here, the blocks are of ap-
proximately equal size, and each split item is assigned to
only one block. Using blocks of the same length yields
similar reduced burden for all study participants. It also
yields similar precision for items of the same type. These
features are not requirements for all matrix sampling
designs, however. If additional precision of estimation were
desired for an item, it could be included on more than one
form, or it could be designated as a core item to be included
on all forms.

A good matrix sampling design allocates split items to
blocks in such a way that for each split item excluded from
a block, there are split items included in the block that,
together with the core items, are predictive of the excluded
item; this facilitates the recovery of information about the
excluded item during analyses of the data. The discussion
below develops a method aimed at achieving this goal. The
development is in two parts. First, in Section 2.1, an index is
formulated for ranking how well each split item is predicted
by every other split item, with predictive utility assessed as
relative gain in precision conditional on the core items being
included. Methods are also given for estimating the values
of the index from a training sample. Second, in Section 2.2,
an algorithm for assigning split items to blocks based on the
index of predictive value is described.

2.1 An Index of Predictive Value

2.1.1 Preliminary Notation for Matrix Sampling
Designs

Let Y denote a split item to be predicted, X =
(X, ..., X,) denote the core items, and Z denote a split
item used to predict Y.

As mentioned above, a matrix sampling design creates
what can be considered missing data. Thus, the subjects in a
potential matrix sampling design can be ordered so that the
s Subjects with observed values of Y are listed first, the
Y —values being denoted by Y, ..., Y, , and the n,

subjects with missing Y — values follow, the Y —values

n
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being denoted by ¥, ,,, ..., Y, , where n, =n
is the total number of observations.

The expectation and variance of Y in the population
targeted for matrix sampling are denoted by E(Y) and
V().

2.1.2 Simplifying Assumptions

+ Mg

obs

Several assumptions are made to simplify the calculation
of the index. The assumptions are used when computing the
index, but not in subsequent data analyses. Each assumption
could be weakened or eliminated if additional research
indicates that it results in substantial degradation to the
assessment of potential matrix sampling designs.

1. Each split predictor Z is considered separately
when added to the core items X. If there are
several items with high mutual correlation, the
assignment algorithm attempts to put the items in
different blocks as required for an effective matrix
design. A multivariate approach based on partial
correlations accounting for other split items would
be anticipated to yield similar properties, and would
require much more computation.

2. Each split predictor Z is assumed to be fully
observed, when in practice, it will not always be
available to predict ¥ because Z is itself a split
item. Also, the occurrence of unplanned missing
data (i.e., missing data not created by matrix
sampling) is not considered. Although these as-
sumptions may overstate the usefulness of Z for
improving estimates of E(Y), such overstatement
may be ameliorated via multivariate methods that
utilize several variables Z. Moreover, each Z will
be administered the same number of times, so any
systematic bias in predictive value should be
approximately the same for each split item; the
primary use of the index is to order items, which is
not changed by a common bias.

3. For derivation of the index values, simple random
sampling is assumed for both the respondents in the
matrix sample and for the training sample. Again,
consistent overestimation of precision is not antic-
ipated to substantially diminish the performance of
the index.

4. ltis assumed that matrix sampling produces missing
data that are missing completely at random. This
assumption is satisfied for all of the matrix designs
considered.

5. For purposes of deriving approximations below, it is
assumed that n,, is large and that the ratio
Ny, /N, 1s fixed as n,, increases. This approxi-
mation should be adequate for most estimands in
national surveys.

Statistics Canada, Catalogue No. 12-001
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2.1.3 Estimation Based on Multiple Imputation

The index of predictive value to be developed is based on
the goal of estimating E(Y) via multiple imputation applied
to the matrix sample. A multiple-imputation-based esti-
mator, y, of E(Y) is approximated, under the assumption
of an infinite number of imputations, as

v M2
In this expression: M is the number of imputations; and y,
is the mean from the ;™ completed data set with imputed
values Y, ., i=ny +1,..,n,, and observed values
Y, =Y,i=1, .., ny, (which do not change across
completed data sets), that is,

n
- _ -
yj = Ny

i=1

n

Mops tot
-l
Y:',j = Mg {ZYI + z Y:/J
i=1

i=ngp+1

tot

An estimator of the variance of ¥ when the imputations are
created using X and Z, based on the common variance
formula in Rubin (1987, Section 3.1), is

Vi = Ve + Vi

comp imp> ( 1)

where the first term is an estimate of the variance that would
be obtained with complete data, and the second term is an
estimate of the variance between imputed data sets. With
large samples, so that the variance of Y can be treated as

known, V.. = V(Y)/n,,, and
M
Vi = lim MY (7, - 7). @)

J=1

It is assumed throughout that the imputation model is
compatible with the complete-data model, so the variance
estimator in (2) is consistent (Rubin 1987, Section 3.6;
Meng 1994).

2.1.4 Defining the Index

When matrix samples are collected, simple but
potentially inefficient estimators of univariate summaries of
a split item, Y, can be obtained from the observed data
without any imputation (that is, using just the observed
values of Y), because the subjects the missing Y — values
are missing completely at random; the variance of the no-
imputation estimator of E(Y) is denoted by Vy; =
V(¥)/ g,

The proposed index is the proportion of the difference
between Vy; and V. that is recovered by the multiple-
imputation estimator, which incorporates the information
containedin X and Z :

Vy -V
IY|X, Z)=—N___M_ 3)
VNI - Vcomp
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The index /(Y| X, Z) takes the value 1 when X and Z
perfectly predict the omitted values of Y (so that
Viur = Veomp)> and it takes the value 0 when X and Z do
not predict the omitted values of Y at all, so that the
multiple-imputation estimator is not an improvement over
the no-imputation estimator (i.e., Vy; = Vy).

The index can be used to assess the potential contribution
of each split item Z to the estimation of the mean of every
other split item Y. A desirable matrix sampling design
ensures that for each split item Y that is excluded from a
block, there are other split items Z included in the block
with high index values for predicting Y, so that information
about Y can be recovered during analyses of data from the
matrix sample.

Note:

1. The variances Vi, Vi,» and V=~ are
proportional to n_., so I(Y|X, Z) is independent
of n,,.

2. [Ifthe core items X are highly predictive of Y, the
index will not differentiate much between the
remaining split items Z; but in this situation, the
selection of appropriate Z for predicting Y is less
important, since Y is already predicted well by X.

2.1.5 Approximating V,

To facilitate the computation of the index /(Y| X, Z), it
is useful to approximate the variance V. The approxi-
mation developed here refers to a specific matrix sampling
design, presuming that one has been chosen.

Assume that the distribution of ¥ given (X, Z) follows
a generalized linear model with a link function p that
depends on unknown parameters B,

EY[X, Z) = p((X", 2)P),

where the link function is equal to the identity for
continuous Y, n(Y) =Y, and the logistic function for binary
Y, u(Y) = logit™' (Y). For continuous Y, a constant
residual variance, o°, is also assumed. Although they are
not developed here, extensions of these models and methods
can be developed for categorical and ordered categorical
variables. The individual categories can be represented by
binary variables, or summaries can be formed when there
are numerous categories.

Schafer and Schenker (2000) derived an approximation
to the variance between imputed data sets, that is, Vimps
when the estimate computed from each completed data set
is a smooth function g of the means of the variables
involved. (In the current development, g is the identity.)
Their approximation, which is based on first-order Taylor
series expansions of g and p and large-sample results
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from the theory of sample surveys (e.g., Wolter 1985,
Chapter 6), will be used here.

Maximum likelihood (or quasi-likelihood, McCullagh
and Nelder 1989) estimation of B based on the n,  sub-
jects with observed values of Y yields an estimator, f,
with variance-covariance matrix V,, (B) (recall simplifying
assumption 4 of Section 2.1.2). Set T (B) = n}, X -
w((X/, z,)B), and denote its derivative with respect to the
j™ component of B evaluated at f by Wi, j(ﬁ), j=
1, ..., (¢ +1). The derivative has the form

H:nis,j(ﬁ) = n;uls z X[j f(ﬁ’ X,'a Z,)

i=ng +1

j=1..,c

and

Mot

> ZfB, X, Z),
i=ng +1
where /(B, X, Z) = w(X/. Z)B)[1 - (X[, Z) P)]
when Y is binary. When Y is continuous, f(B, X,
Z;)=1, which implies that the derivatives [ j(ﬁ) are
equal to the means of the core items X and the split item
Z.

Now let i’ (B) denote the vector of derivatives and
P, denote the proportion of subjects with missing Y.
Applying equation (10) of Schafer and Schenker (2000),
with their function g equal to the identity, and their general
parameter O equal to B, yields

— A -1
ux'ujis,c+1(B) = nmis

Ll Y w(XLZ)B)
mis i:nobs-%—l

V. ~ P?

~ .
imp mis

r . “)
[1 - p(X;,Z)P)]

+ (i B)) Voo B) Tl B)
when Y is binary, and
Vim & P [07 /11 + (Wis B) Vi B) i B (5)

when Y is continuous.

2.1.6 Estimating the Index of Predictive Value from
a Training Sample

Because the planned missing data in our matrix sampling
designs are assumed to be missing completely at random,
sample moments and other parameter estimates from a
training sample can be used to estimate the corresponding
moments and parameters in both the subsamples with
observed and missing values of ¥, under the assumption
that the training sample is drawn from the same target
population. The moments and parameters include: V(Y);
the residual variance o>, which can be estimated by 6.,
the estimated residual variance from the regression fitted to
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the training sample; the regression coefficients, with
estimates B, from the training sample; and the variance-
covariance matrix of the regression coefficients, which can
be approximated by rescaling the estimate V. (8,,) from the
training sample to obtain V, (B)=(n, /n, )V, B,),
where n,, is the size of the training sample. The derivatives
15 (B) and the function involving i in (4) are also in the
form of subsample means, and thus can be estimated by the
corresponding means in the training sample. Denoting the
derivatives in the training sample by T, (8,), and sub-
stituting the training sample estimators into (4) and (5),
yields

ng > w((X!.z)B,)
mis i=1

2
~ P

imp = P - w(X',z2)p1Y | ©
B @ B Ve By T, By

obs

+

for binary variables, and

\/imp = Pnfis (6t2r /nmis + 6t2r /nobs)’ (7)
for continuous variables, with the latter expression follow-
ing from the fact that (i, (B,.))" V,, (B, )Ti. (B, ) reduces to
the simple form &7, /n,..

2.2 Assigning Split Items to Blocks
2.2.1 Design Criteria

Matrix sampling forms are created by allocating split
items to different blocks, as described at the beginning of
Section 2. Four design goals guide the assignment of items:
1) assign each split item to a single block; 2) assign an
approximately equal number of items to each block; 3)
assign logically linked items to the same block; and 4)
assign one or more items to each block that predict the items
omitted from the block. Denote the number of blocks by
ok Moo =4 10 the NHANES simulation study).

A quantitative criterion for the fourth goal is specified
separately for each split item Y by finding the (7, —1)
other split items Z with the highest predictive index values
1(Y| X, Z), for the potential allocation of one of them to
the (my,y —1) blocks not containing Y. The items Z
exclude those items linked to ¥, which must appear with
Y in a block. The (n,,, —1) values of /(Y | X, Z) for the
items Z provide an upper limit on the predictive indices
that could be achieved for Y. Because these optimal index
values are determined separately for each split item Y, they
may not be achievable for all items Y simultaneously.

To evaluate a given matrix sampling design, the highest
index value /(Y| X, Z) actually achieved for each of the
(Mo —1) blocks not containing a split item Y is
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determined. The average of the (m,, —1) differences
between these indices and the corresponding optimal
predictive indices for Y is computed. These average
differences are then averaged across all of the split items Y
to yield an overall measure for the design.

2.2.2 An Assignment Algorithm

The criteria in Section 2.2.1 require maximization over a
set of integer inputs (block assignments) to a function
subject to a set of linear constraints imposed by the need to
create approximately equal-length blocks with some items
potentially linked together. Although integer programming
methods could be applied to this maximization, the follow-
ing algorithm is much simpler, and it achieved nearly
optimal results for the NHANES application, as demon-
strated in Section 3.1.

Step 1. Randomly order the split items. The assignment of
items to blocks proceeds sequentially, via repetition of steps
2 and 3 below, until all of the items have been assigned.

Step 2. Assign the next (or first) unassigned item, say ¥,
to the block with the fewest items. If multiple blocks are
tied, assign Y'” to the block with the lowest maximum pre-
dictive index 7(Y” | X, Z) for Y. If a tie still remains,
assign Y to any of the eligible blocks. If there are items
linked to Y'”, also assign them to the selected block.

Step 3. For each item assigned in Step 2 (Y” or its linked
items), find the remaining unassigned item, say Y, most
predictive of it. Assign Y (and any items linked to Y)
to a block other than the block selected in step 2, by
following the same procedure that was used for ¥'” in
step 2.

Experience with the NHANES data suggests moderate
sensitivity of the algorithm to the initial ordering of the
items (in step 1). To reduce the dependence, 1,000 designs
were generated with randomly selected orderings, and the
one yielding the best overall measure of predictive value (as
defined at the end of Section 2.2.1) was selected.

3. A Study Using Data from the NHANES

To assess the feasibility of a matrix sampling design for a
survey like the NHANES, an evaluation study was
conducted. First, NHANES 1I (i.e., the seccond NHANES)
was used to create a matrix sampling design via the method
described in Section 2. This simulates the realistic situation
in which data from a previous survey are used in designing
the questionnaire for a new survey. The design so developed
was then applied to several simulated samples created from
NHANES III data. The subjects in NHANES III with
complete data on a selected set of variables were treated as a
large finite population. One hundred samples were drawn
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from the NHANES III finite population using a stratified
two-stage sample design with unequal probabilities of
selection. The complete data are available for each
simulated sample, providing a “gold standard.” The matrix
sampling design was then imposed on each sample, and the
missing values due to matrix sampling were multiply
imputed. Several analyses were conducted using the matrix
samples without imputation, the multiply imputed matrix
samples, and the samples of complete data (i.e., the gold
standard). Results summarized across the simulated samples
yield estimates of the repeated sampling properties of the
different methods.

The matrix sampling design created using NHANES II
data is summarized in Section 3.1. The design of the
simulation study using NHANES III data is described in
Section 3.2. Results of the study are presented in Section
3.3. Some limitations of the study that are not discussed in
Sections 3.1-3.3 are covered in Section 3.4.

3.1 A Matrix Sampling Design Based on Training
Data from NHANES II

Given the time that would have been required to extract
and analyze all of the NHANES III variables, only a subset
were included in the study to keep it manageable, although
the software utilized in the study could be applied with
many more variables. The variables in the study include
items representing many of the topics included in the survey
and were selected in consultation with substantive experts.
The data types include binary and continuous variables
representing survey questions and laboratory measurements.
One pair of items forming a skip pattern was included:
“Have you smoked 100+ cigarettes?” followed by “Do you
smoke now?” The algorithm for assigning split items to
blocks, described in Section 2.2, forced these items to be in
the same block.

Table 1 gives brief descriptions of the variables included.
Variables that appeared in NHANES III but not in
NHANES II (again, a realistic situation) have asterisks next
to their names.

As mentioned earlier, the matrix sampling design was
constructed with four blocks. Each block contained all of
the core items. In addition, the split items that appeared in
NHANES II were allocated to the blocks by applying the
methods developed in Section 2 to data from NHANES II.
(In estimating the necessary indices, missing values in the
NHANES 1I data were handled by analyzing only the
complete cases.) The split items that did not appear in
NHANES 1II were randomly divided and assigned to the
blocks to keep the block lengths approximately equal. The
“Type” column of Table 1 identifies the core and split
variables and indicates the block assignments for the split
variables.
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For each split item that appeared in NHANES 11, Table 2
displays the following: the block to which the item was
assigned (“Block™); the three highest predictive indices for
other split items as predictors of the item in question
(“Optimal”); and the highest index values actually achieved
by the selected design in the three blocks not containing the
item in question (“Achieved”). The index values are sorted
from low to high for each item in question, so the columns
in the table containing index values do not correspond to
specific items or blocks. Table 2 shows that the selected
design is nearly optimal for the criteria of Section 2.2.1. For
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example, the average difference between the optimal
predictive indices and the corresponding indices actually
achieved is only 0.002.

The column of Table 2 labeled “Low” under “Achieved”
provides lower bounds on the anticipated improvement in
estimators of univariate means for the split items. Nineteen
of the twenty-one predictive indices in this column are less
than 0.20, suggesting relatively low efficiency for multiple-
imputation estimators in this matrix sampling design. For
more discussion of this issue, see Sections 3.3 and 4.

Table 1
Variables from NHANES III that were Included in the Evaluation.
Items Marked with Asterisks did not Appear in NHANES II

Variable Name Description of the Variable Type
BMPBMI Body Mass Index Core
CHP* Serum Cholesterol (MG/DL) Core
DMARETHN Race-Ethnicity Core
DMPCREGN Census Region, Weighting(Texas in South) Core
DMPMETRO Rural/Urban Code Based on Usda Code Core
GHP* Glycated Hemoglobin: (%) Core
HABI Is Health in General Excellent, ..., Poor Core
HAB2* Go to Particular Place for Health Care Core
HABS5* Past 12 Months, # Times Saw Doctor Core
HACI1C Doctor Told: Congestive Heart Failure Core
HACI1L* Doctor Ever Told you Had: Lupus Core
HACIM Doctor Ever Told you Had: Gout Core
HAD1 Ever Been Told you Have Sugar/Diabetes Core
HAD10 Are you Now Taking Diabetes Pills Core
HAE3 Told 2+ Times you Had Hypertension/HBP Core
HAF10 Doctor Ever Told you Had a Heart Attack Core
HAF26 Severe Dizziness for More Than 5 Minutes Core
HAL1 Cough Most Days, 3+ Consecutive mo in YR Core
HALG6 Had Wheezing,Whistle in Chest Past 12 MO Core
HAL14E Symptoms Brought on by: Pollen Core
HAZMNKIR Average K1 BP from Household and MEC Core
HAZMNKSR Average K5 BP from Household and MEC Core
HFA12 Marital Status Core
HFA8R Highest Grade or YR of School Completed Core
HSAGEIR Age at Interview (Screener) — Qty Core
HSSEX Sex Core
I1p Serum Insulin (UU/ML) Core
G1P Plasma Glucose (MG/DL) Split—1
HAC1J Doctor Ever Told you Had: Goiter Split—1
HACIN* Doctor Ever Told you Had: Skin Cancer Split—1
HACIO Doctor Ever Told you Had: Other Cancer Split—1
HAF14* Get Pain in Either Leg While Walking Split—1
HAL11A Stufty, Itchy, or Runny Nose, Past 12 MO Split—1
BMPWHR* Waist to Hip Ratio Split—2
HACIE Doctor Ever Told you Had: Asthma Split—2
HACIK Doctor Ever Told you Had:Thyroid Disease Split—2
HAF24 Numbness etc,1 Side Face/Body for > 5 Min Split—2
HAL11B Watery, Itchy Eyes in Past 12 Months Split—2
HAL19A* In Past 12 Months Had: Cold or Flu Split—2
HAL19C* In Past 12 Months Had: Pneumonia Split—2
HAT28 Active Compared with Men/Women your Age Split—2
PBP Lead (UG/DL) Split—2
SPPFVC* FVC, Largest Value (ML) Split—2

Statistics Canada, Catalogue No. 12-001



224

Thomas, Raghunathan, Schenker, Katzoff and Johnson: An Evaluation of Matrix Sampling Methods Using Data

Table 1 (Continued)
Variables from NHANES III that were Included in the Evaluation.
Items Marked with Asterisks did not Appear in NHANES II

Variable Name Description of the Variable Type

FEP Serum Iron (UG/DL) Split—3

HAF1 Ever Had Any Pain or Discomfort in Chest Split—3

HAF23 Weak/Paralysis on Face, Arm, Leg For > 5 Min Split—3

HAL19B In Past 12 MO Had: Sinusitis/Sinus Prob Split—3

HARI Have you Smoked 100+ Cigarettes In Life Split—3

HAR3 Do you Smoke Cigarettes Now Split—3

SPPPEAK* Peak Expiratory Flow Split—3

BDPTOBMD* Bone Mineral Density Total Region-GM/CM SQ Split—4

HAB4 Past 12 MOS, # Times Stayed in Hospital Split—4

HACID Doctor Ever Told you Had: Stroke Split—4

HACIF Doctor Ever Told Had: Chronic Bronchitis Split—4

HACIH Doctor Ever Told you Had: Hay Fever Split—4

HACI1I Doctor Ever Told you Had: Cataracts Split—4

HAE6* Ever Had Blood Cholesterol Checked Split—4

HAM11* Consider Self Over/Under/Right Weight Split—4

HAE7* Doctor Told Blood Cholesterol Level High Split—4

Table 2
Indices of Predictive Value Based on NHANES II Data for the Split Items in the Matrix Sampling Design
Optimal Achieved

Item Block Low Medium High Low Medium High
HAC1J(GOITER) 1 0.04 0.04 0.15 0.04 0.04 0.15
HAC10(OTHER CANCER) 1 0.05 0.06 0.13 0.05 0.06 0.13
HAL11A(NASAL SYMPTOMS) 1 0.17 0.27 0.29 0.17 0.27 0.29
G1P(PLASMA GLUCOSE) 1 0.26 0.30 0.43 0.26 0.30 0.43
HACIE(ASTHMA) 2 0.09 0.10 0.13 0.08 0.09 0.13
HACIK(THYROID DISEASE) 2 0.07 0.07 0.15 0.07 0.07 0.15
HAF24(NUMBNESS) 2 0.12 0.12 0.12 0.11 0.12 0.12
HAL11B(WATERY EYES) 2 0.14 0.15 0.25 0.14 0.15 0.25
HAT28(ACTIVE FOR AGE) 2 0.12 0.13 0.16 0.11 0.13 0.16
PBP(LEAD (UG/DL)) 2 0.19 0.20 0.21 0.18 0.20 0.21
HAF1(PAIN IN CHEST) 3 0.25 0.29 0.29 0.23 0.25 0.29
HAF23(WEAK/PARALYSIS) 3 0.08 0.12 0.12 0.08 0.12 0.12
HAL19B(SINUSITIS/SINUS) 3 0.07 0.12 0.21 0.07 0.12 0.21
HARI1(100+ CIGARETTES) 3 0.13 0.14 0.14 0.13 0.14 0.14
HAR3(SMOKE NOW) 3 0.10 0.11 0.12 0.10 0.11 0.12
FEP(SERUM IRON) 3 0.05 0.05 0.08 0.05 0.05 0.08
HAB4(# HOSP STAYS) 4 0.07 0.11 0.19 0.07 0.11 0.19
HACID(STROKE) 4 0.19 0.20 0.24 0.18 0.20 0.24
HAC1F(BRONCHITIS) 4 0.10 0.12 0.12 0.10 0.10 0.12
HACIH(HAY FEVER) 4 0.07 0.07 0.09 0.04 0.07 0.09
HACI1I(CATARACTS) 4 0.08 0.09 0.12 0.08 0.09 0.12

Note: Optimal predictive indices are determined for each item separately and may not be achievable for all

items simultaneously.

3.2 Design of the Simulation Study Based on
NHANES III Data

3.2.1 Population and Sample Design

The matrix sampling design and multiple-imputation
analysis could be applied to the entire NHANES III sample.
Although this would be informative, a study based on a
single data set would not allow the assessment of repeated-
sampling statistical properties of the methods studied.
Therefore, the 11,759 subjects from the NHANES III

Statistics Canada, Catalogue No. 12-001

survey who had complete data on the variables listed in
Table 1 were treated as a finite population, and repeated
samples were drawn from this population. In selecting sam-
ples, a complex sample design was used instead of simple
random sampling to create a more realistic simulation study.
To achieve this objective, three design variables were added
to the finite population: (1) simulation stratum; (2) simu-
lation cluster; and (3) simulation sample weight (here, the
modifier “simulation” is used to distinguish these quantities
from the original NHANES III design variables).
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L.

Simulation strata: The NHANES III public-use
sample has 49 strata with two clusters per stratum.
The strategy for the simulation study was to create a
smaller number of strata with a larger number of
clusters within the strata, to ensure sufficient
sample-to-sample variation between the simulated
samples. The 49 original strata were collapsed into
20 simulation strata as follows. Each of the 49
original strata were classified into one of eight
categories formed from the cross-classification of
census region (4 levels) and rural/urban status based
on the United States Department of Agriculture
code (2 levels). Within each of these eight cate-
gories, a cluster analysis was performed using the
stratum-level proportions of non-Whites to select
the original strata to combine. Combining the orig-
inal strata created two or three simulation strata
within each of the eight categories, yielding a total
of 20 simulation strata. This method of creating
larger strata also increased the racial heterogeneity
between the resulting simulation strata, which in-
creases the importance of weighting in the analyses.

Simulation clusters: The NHANES III public-use
sample has 98 clusters, with two clusters in each of
the original 49 strata. After the 49 original strata
were collapsed into 20 simulation strata, the original
clusters were subdivided based on another cluster
analysis using systolic and diastolic blood pressure
readings and body mass index (BMI). Subjects with
similar values were grouped together to create a
setting with intraclass correlation for these three
variables within each simulation cluster. The num-
ber of simulation clusters per simulation stratum
ranged from 3 to 25, and the number of subjects per
simulation cluster ranged from 30 to 98.

Simulation sampling weights: The simulation
sampling weights were determined by the follow-
ing two-stage sample design. First, from each
simulation stratum, two simulation clusters were
drawn via simple random sampling without
replacement. Because there were unequal numbers
of simulation clusters across the 20 simulation
strata, the simulation sampling weight correspond-
ding to this stage was w, =4,/2,h=1, 2, ...,
20, where 4, is the number of simulation clusters
in simulation stratum /.

Second, from each selected simulation cluster, 30
subjects were drawn at random without replacement
with varying probabilities of selection. If the cluster
size was 30, then all subjects were included in the
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sample. For clusters with more than 30 subjects, the
first-draw selection probabilities were computed by
normalizing the reciprocals of the original weights
from the NHANES III public-use sample to sum to
1 within each simulation cluster, with the normal-
ized reciprocal for each subject used as the selection
probability for that subject. The first-draw selection
probabilities within simulation clusters ranged from
0.0003 to 0.2756.

Let i index sampled subjects within a simulation
cluster, ¢ denote sampled clusters within a simula-
tion stratum, and /4 denote simulation strata as
above, i=1, 2, ..., 30,c=1,2, h=1,2, .., 20. If
the size of cluster ¢ in stratum 4 was 30, then the
second-stage simulation weight for subject i in
cluster ¢ was w,,, =1. If the size of cluster ¢ in
stratum % was greater than 30, then the second-
stage simulation weight for subject i in cluster ¢
was W, o T, where m, denotes the first-draw
selection probability for subject i. The final
simulation sampling weight for each sampled
subject was wi, =W, X Wy, i=1, 2, ..., 30,c=
L2, h=1, 2, ..., 20.

The design effects for estimating population means
averaged approximately 2.1 in this simulation study. The
complex sample design features in the study are informative
in the sense that ignoring the design features in analyses of
data may result in biased estimates and underestimation of
sampling variances. This is due in particular to the use of
data on race, blood pressure, and BMI in the simulation
sampling design, and the well-documented connection be-
tween race/ethnicity and blood pressure or BMI.

3.2.2 Simulating Matrix Samples

One hundred independent probability samples were
drawn from the finite population. Each simulated sample
included 1,200 subjects (20 simulation strata, 2 simulation
clusters per simulation stratum, 30 subjects per simulation
cluster).

Matrix sampling was overlayed on each simulated
sample by assigning each of the 1,200 subjects randomly to
one of the six forms containing the core items and one of the
block pairs (1,2), (1, 3), (1,4), (2,3), (2,4), or (3,4). The
random assignment was carried out such that 200 subjects
were assigned to each form. Thus, for each matrix sample,
the core items were available for all 1,200 sampled subjects,
whereas each split item was available for 600 sampled
subjects.

3.2.3 Estimation Methods Compared

Point estimates from each sample in the simulation study
were obtained using three methods: analyzing the complete
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data for a gold standard; analyzing the matrix sampled data
with no imputation; and applying multiple imputation to fill
in the missing values caused by matrix sampling, followed
by multiple-imputation analyses. For the complete-data and
no-imputation analyses, the point estimates were weighted.
For the multiple-imputation analyses, the same weights
were used in calculating the point estimate from each of the
multiple completed data sets, and then the usual averaging
of the multiple point estimates was carried out (Rubin and
Schenker 1986; Rubin 1987, Section 3.1).

Multiple imputation of the missing split items was carried
out using the sequential regression approach (Kennickell
1991; Oudshoorn, Van Buuren and Van Rijckevorsel 1999;
Raghunathan, Lepkowski, Van Hoewyk and Solenberger
2001), as implemented by the software package [VEware
(http://www.isr.umich.edu/src/smp/ive). Five sets of impu-
tations were created by independently applying the sequen-
tial regression approach five times, with ten iterations of the
sequential regression algorithm for each set of imputations.
The number of imputations is based on theory and experi-
ence showing that five imputations is usually adequate,
especially if the fraction of missing information is not large
(Rubin 1996). With missing-data rates for the split items of
50%, the fraction of missing information, which is roughly
1= Veomp / Vimps 18 €xpected to be at most 50%, as is borne
out in the simulation results. Rubin (1987, Table 4.1) gave
the large-sample relative efficiency of five imputations rela-
tive to an infinite number of imputations as 90% when there
is 50% missing information. A larger number of imputations
would increase precision for estimating the between-imputa-
tion variance (V,,) and the fraction of missing information.

To account for the complex simulation sample design,
main effects were included in the imputation model for
simulation stratum and simulation cluster nested within
simulation stratum. The logarithm of the simulation sam-
pling weight was also included as a predictor in the impu-
tation model, along with the core and split items.

3.3 Results of the Simulation Study

To evaluate estimates based on the matrix sampling
design, two types of analysis problems were considered:
estimating the population means of the split items; and
regression analyses involving the split and core items.
Properties of the no-imputation, multiple-imputation, and
complete-data estimators across the 100 simulated data sets
were compared with each other to assess bias and loss of
efficiency due to matrix sampling combined with multiple
imputation.

3.3.1 Estimating Population Means of Split Items

For the population mean of a split item, the simulated
standardized bias of the no-imputation estimator was
defined as (Avey, — Ave,,,)/ SDy, Wwhere Avey,

comp
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Ave,,.,, and SDy; denote, respectively, the averages of
the no-imputation and complete-data estimates and the
standard deviation of no-imputation estimates across the
100 simulated data sets. An analogous simulated standard-
ized bias was defined for the multiple-imputation (MI)
estimator. Table 3 summarizes the simulated standardized
biases for the 32 split items.

Table 3
Simulated Standardized Biases of the No-Imputation
and Multiple-Imputation Estimators of the
Population Means for the 32 Split Items

Frequency
No Multiple
Standardized Biases Imputation Imputation
-1.4 1
(-1, —0.6] 4
(0.6, —0.4] 5
(=04, —0.2] 4
(-0.2,0) 15 10
(0,0.2) 17 4
[0.2,0.4)
[0.4, 0.6) 2
[0.6, 1)
1.4 1
4.6 1
Total 32 32

Because our matrix sampling mechanism results in
missing data that are missing completely at random, the no-
imputation estimators are close to unbiased. This is reflected
in the simulation results by the fact that none of the absolute
standardized biases is larger than 0.2. The multiple-impu-
tation estimators generally have somewhat higher simulated
standardized biases than do the no-imputation estimators,
although the absolute standardized biases are less than one
for all but three split items and less than 0.6 for all but
seven. As a guideline for judging standardized biases,
Cochran (1977, page 14) shows that a standardized bias of
0.6 produces nominal 95% confidence intervals having
roughly 91% actual coverage. Any substantial biases ob-
served in this study when matrix sampling is used in
conjunction with multiple imputation are likely due to
deficiencies in the imputation models and not to the matrix
sampling itself, given that the no-imputation analyses were
seen to be approximately unbiased. With larger sample sizes
in an application to an actual survey, the corresponding
standardized biases would tend to be moved upward
because of the smaller denominators; but the standardized
biases might also be moved downward because of improved
large-sample approximations.

Loss of efficiency due to matrix sampling rather than
using the full questionnaire can be assessed by comparing
the sampling error of the no-imputation, multiple-impu-
tation, and complete-data estimators (computed as standard
deviations across the 100 simulated data sets). Table 4
summarizes the ratios of the simulated standard deviations
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of the multiple-imputation estimators to those of the no-
imputation estimators, and the ratios of the simulated
standard deviations of the complete-data estimators to those
of the multiple-imputation estimators (the term “simulated
standard deviation” of an estimator is used rather than
“simulated standard error” to avoid confusion with the
estimated standard error that could be obtained from the
analysis of each simulated data set).

Table 4
Ratios of the Simulated Standard Deviations of the
No-Imputation (NI), Multiple-Imputation (MI),
and Complete-Data (comp) Estimators of the
Population Means for the 32 Split Items

Frequency

Ratios SDy; /SDy SDCOmp /SDpq
(0.5, 0.6] 2
(0.6, 0.7] 9
(0.7, 0.8] 14
(0.8, 0.9] 6
(0.9, 0.95] 7
(0.95, 1] 18 1
(1, 1.03] 7

Total 32 32

Typically, the multiple-imputation estimators are more
efficient than the no-imputation estimators, but the gain in
efficiency is only modest, as indicated by the fact that most
of the ratios SD,;; /SD,; in Table 4 are between 0.9 and 1.
Such modest gains in efficiency can be predicted roughly
from the indices of predictive value based on data from
NHANES II (displayed in Table 2), as follows. Because each
split item is included in only half of the matrix sampling
forms, it follows that the variance of a complete-data
estimator of the mean of a split item should be about one-half
the size of the variance of the corresponding no-imputation
estimator. Dividing the numerator and denominator of
expression (3) by Vy;, and setting V., / Vi = 0.5, yields
2(1 — Vy/Vy) as an approximate expression for the
index of predictive value in this simulation study. For an
index of 0.12, which is the median of the ‘“Achieved
Medium” indices in Table 2, it follows that V,,, / Vy; should
be about 0.94. This ratio of variances is equivalent to a ratio
of standard deviations of about /0.94 = 0.97, which is near
the middle of the range of ratios summarized in Table 4. In
this study, because the multiple-imputation estimators are
only modestly more efficient than the no-imputation esti-
mators, and because the multiple-imputation estimators have
some biases associated with them, the mean square errors for
the multiple-imputation estimators are higher than those for
the no-imputation estimators in 22 out of 32 cases.

The simulation results on the efficiency of the multiple-
imputation estimators relative to the complete-data esti-
mators also conform with theory. Since V,,,,/Vy; should
be about 0.5, and since V,,; should be slightly smaller than
Vi it follows that V_ /V,,; should be slightly larger

comp
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than 0.5, or equivalently, that the typical ratio of standard
deviations SD,,, /SDy; should be slightly larger than
J0.5 = 0.71. Indeed, the median of the ratios summarized in
Table 4 is 0.75. An alternative to the multiple imputation
estimation is two-phase weighting based on core item esti-
mators and their differences between blocks. Any advantage
in efficiency from multiple-imputation estimation would be

due to the additional information from the split items.
3.3.2 Estimating Regression Coefficients

The matrix sampling and multiple-imputation methods
were also evaluated for estimation of the coefficients of
eight regression models, which were specified to be similar
to models that have appeared in the literature. The regres-
sion models, which are listed in Table 5, had a total of 115
coefficients. No-imputation estimators for the regression
coefficients were not included in the simulation study,
although some theoretical results on their efficiency are
discussed in this section.

For each regression coefficient, the simulated standard-
ized bias was defined analogously to the definition used for
each mean in Section 3.3.1. Table 6 summarizes the
standardized biases for the 115 regression coefficients. Most
of the standardized biases are small, with absolute values
greater than one for only five coefficients and absolute
values of 0.6 or greater for only seven.

Table 7 summarizes the ratios of the standard deviations
of the complete-data estimates across the 100 simulated data
sets to those of the multiple-imputation estimates, for the 115
regression coefficients. Separate summaries are displayed by
whether the regression models involve split variables from
only one block (Models 1, 2, 6, and 7) versus two blocks
(Models 3, 4, 5, and 8). A larger proportion of the ratios are
close to one than was the case for estimating means (Table
4). In addition, for several regression coefficients (partic-
ularly from Models 3, 6, 7, and 8), the simulated standard
deviations of the complete-data estimators are moderately
larger than those of the multiple-imputation estimators, and
for one coefficient, the ratio is about two. Finally, there are
four regression coefficients for which there appears to be a
substantial loss of efficiency due to matrix sampling, with
ratios less than 0.3 (one each from Models 1, 2, 5, and ).
The ratios close to or larger than one could be due in part to a
lack of fit of some regression models to the complete data
and a better fit of the models to the data completed by
imputation, with the latter resulting from an imputation
process that is based on regression models. Moreover, the
two smallest ratios occur for regression models involving
split variables from two blocks, for which the fraction of
subjects in the matrix sample with no missing data is only
one-sixth, as discussed further below.
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Table 5

Regression Models Used in the Evaluation

Type of regression model

Dependent variable

Variables recoded to create
predictors including interaction
terms. Each model also includes an
intercept term. For each variable,
the number in the parentheses
indicates the number of regression
coefficients associated with the
variable

Split variables in the
regression models. For each
variable, the number in the
parentheses indicates the
block containing the variable

1. Linear

2. Logistic

3. Logistic

4 and 5. Linear

6 and 7. Logistic

8. Logistic

G1P

HAF10

HAF10

SPPFVC

HCHP (1 IF CHP>=240
AND 0
OTHERWISE)

HACIE

HSSEX(1) ,HSAGEIR(1),
DMARETHN(3), and GHP(1)

HSSEX(1), HSAGEIR(1),
DMARETHN(3), FEP(1), and
BMPBMI(1)

HSSEX(1), HSAGEIR(1),
DMARETHN(3), HAD1(1),
HAE3(1), PBP(1), FEP(1), CHP(1),
and G1P(1)

HSAGEIR(1), DMARETHN (3),
HFAS8R(2), and BMPBMI(1)

[By gender (HSSEX), and
restricted to never smokers (HAR1,
HAR3)]

HSAGEIR(2), DMARETHN(3),
HFASR(1), BMPBMI(3),
(HAR3,HAR1)(2),
BMPBMI*HSAGEIR(6), and
DMARETHN*BMPBMI(9) [By
Gender (HSSEX)]

HSAGEIR(5), HSSEX(1),
DMARETHN(3), BMPBMI(4),
(HAR3, HAR1)(2), SPPPEAK(1),
and SPPFVC(1)

GIP(1)

FEP(3)

FEP(3) and G1P(1)

SPPFVC(1), HAR1(3), and
HAR3(3)

(HAR3, HAR1)(3)

HACIE(2),
(HAR1,HAR3)(3),
SPPPEAK(3), and
SPPFVC(2)

Table 6

Simulated Standardized Biases of the Multiple-Imputation
Estimators for the 115 Regression Coefficients

Range of Standardized Biases Frequency
-52 1
-1.5 1
-1.3 1
-1.1 1

(-1,-0.6] 2
(-0.6,-0.4] 2
(-04,-0.2] 3

(-0.2,0) 52

(0,0.2) 44
[0.2,0.4) 6
[0.4, 0.6) 1
[0.6, 1)
3.7 1
Total 115
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Table 7
Ratios of the Simulated Standard Deviations of the Complete-
Data Estimators to those of the Corresponding Multiple-
Imputation Estimators, for the 115 Regression
Coefficients, by Whether the Regression Models
Involve Split Variables from Only One
Block Versus Two Blocks

Range of Ratios

Frequency

One Block Two Blocks

(0,0.1]
(0.1, 0.2]
(0.2,0.3]
(0.3, 0.4]
(0.4, 0.5]
(0.5, 0.6]
(0.6, 0.7]
(0.7, 0.8]
(0.8, 0.9]

(0.9, 0.95]
(0.95, 1]
(1, 1.05]

(1.05, 1.1]
(1.1, 1.2]
(1.2, 1.4]
(1.4, 1.6]

2.0
Total

1
1

2
1
3
2 3
2 7
4 4
2 3
29 8
20 5
4 2
3 2
4
2
1
69 46

For regression models involving split variables from only
one block, the theoretical efficiency of the complete-data
estimator relative to the no-imputation estimator, that is, the
ratio of the variance of the latter to the former, is ap-
proximately two because only half of the subjects in the
matrix sample will have complete data on those variables;
and for regression models involving split variables from two
blocks, the theoretical relative efficiency is approximately
six. In contrast, the respective simulated relative efficiencies
of the complete-data estimator relative to the multiple-
imputation estimator, that is, the inverses of the squared
ratios summarized in Table 7, are less than two for 64 out of
69 coefficients when only one block is involved; and they
are less than six for 44 out of 46 coefficients when two
blocks are involved. Thus, the multiple-imputation esti-
mators are generally more efficient than the no-imputation
estimators for regression problems. Nevertheless, the large
losses of efficiency of the multiple-imputation estimators
relative to the complete-data estimators for some coeffi-
cients as well as the apparent gains in efficiency for other
coefficients are worth further investigation.

3.4 Additional Limitations of the Simulation Study

This section briefly discusses some additional limitations
of the simulation study and adjustments required during the
implementation of the study.

Originally, two questions about two conditions, gout and
lupus (HAC1IM and HAC1L) were designated as split items.
Due to low prevalence of these two conditions in the
constructed finite population, many of the simulated
samples had no subjects with these conditions. After a few
preliminary runs, the designations for these two items were
changed from split to core. In general, in situations with
limited sample sizes, conditions with very low prevalence
rates may need to be designated as core items. In addition,
due to issues such as some split items appearing in
NHANES 1II but not in NHANES 1I, as well as logical
linkages between some split items, the number of split items
per block in the simulation study varied slightly more than
intended (from 6 to 10).

In the regression models listed in Table 3, the number of
predictors ranged from 8 to 27, because some of the
regression models included interaction terms as predictors.
Even with the sample size of 1,200 for the simulated
samples, some of the complete-data estimators were
unstable. This was due in part to small sample sizes for
some combinations of variables that affected the estimation
of interactions. Note that in many applications of matrix
sampling to large surveys, complete-data sample sizes
would be substantially larger than the size of 1,200 used in
our simulation study.

The Monte Carlo standard errors of the simulated
averages in this study are approximately one-tenth of the
standard deviations of the individual quantities across the
100 samples. However, the standard deviations across the
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samples varied widely from one estimand to another, due to
differences in scaling. For example, the simulated standard
deviations of the complete-data estimators of the 115
regression coefficients ranged from 9.8 x 10~ to 1169.6.
More precise estimates of bias and efficiency could be
computed based on a larger number of simulated samples
than was used in this study.

4. Discussion

In this paper, a method was developed for creating matrix
sampling designs that have the property that the items
included on forms are predictive of the items that have been
excluded. The feasibility of implementing such designs in a
complex, large-scale health survey was demonstrated via an
example involving the National Health and Nutrition Exam-
ination Survey. Matrix sampling designs, in conjunction
with multiple imputation, can be used to expand the scope
of a survey without increasing respondent burden or unduly
increasing the burden to subsequent data analysts.

In the study involving NHANES data, the multiple-
imputation analyses of data from the matrix samples were
modestly effective, with minor evidence of bias and with
greater efficiency than simply analyzing the matrix sampled
data without imputation. The increased efficiency was
especially evident in the context of regression analyses.

Matrix sampling in the NHANES example typically
resulted in large losses of precision compared to what could
have been achieved with a longer, complete survey (i.e., no
matrix sampling), however. This finding, which is in
contrast with the more promising results obtained in other
applications of matrix sampling, highlights the importance
of including good predictors of the split items in a survey.
For example, an application of matrix sampling to an
educational survey (e.g., Beaton and Zwick 1992) has been
much more successful, because the split items are highly
correlated responses to questions designed to measure the
same trait. Raghunathan and Grizzle (1995) also
demonstrated much greater recovery of information on
omitted items in the context of a health survey.

The items in the NHANES example were chosen mainly
to represent a variety of important health characteristics,
without much consideration given to their ability to predict
or be predicted by other variables. Many of the split items
represented rare illnesses that are not well predicted by
common medical conditions and standard laboratory mea-
surements; in hindsight, these variables were not good
candidates for split items. Variables representing rare events
may also cause difficulties with many common statistical
methods that rely on large-sample approximations, making
them less amenable to model-based imputation.

Statistics Canada, Catalogue No. 12-001

Better candidates for matrix sampling designs are
“panels” of inter-related items. For example, matrix sam-
pling techniques can be useful when there are multiple
measurements of the same (or closely related) quantities,
and it is desired to collect some of the measurements for
subsets of the survey respondents due to cost and time
considerations. Some rudimentary forms of matrix sampling
are already being applied in such settings, and there may be
substantial improvements possible by applying methods,
such as those developed in this paper, that aim to exploit the
associations among the variables.
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